98%
921
2 minutes
20
Background: Current literature informs us that bivalent vaccines will generate a broader serum neutralizing antibody response to multiple SARS-CoV-2 variants, but studies on how this breadth relates to the memory B cell (MBC) and T cell responses are sparse. This study compared breadth of neutralising antibody, and memory B and T cell responses to monovalent or a bivalent ancestral/Omicron BA.1 COVID-19 booster vaccine.
Methods: At baseline and 1-month post-booster, neutralisation activity and frequencies of receptor binding domain (RBD)-specific MBCs and Spike-specific memory T cells were measured against a panel of variants.
Findings: Both vaccines boosted neutralising antibodies to 5 variants - Wuhan-Hu-1, Delta, BA.1, BA.5 and JN.1, the latter of which had not yet emerged at the time of sample collection. The bivalent vaccine induced a significantly larger increase in nAb against BA.1 and JN.1. Both vaccines boosted RBD-specific MBC responses to Wuhan-Hu-1, Delta, BA.1 and BA.5 variants with a significantly greater increase for BA.1 in the bivalent group. The breadth of MBCs was significantly higher in those who received the bivalent boost and correlated with nAb breadth. Both vaccines significantly boosted Spike-specific T cell responses to the Wuhan-Hu-1 and BA.5 variants, but only the bivalent vaccine boosted BA.1 responses.
Interpretation: These results suggest that the bivalent vaccine confers an advantage against future novel variants due to increased frequency of broadly reactive RBD-specific B cells.
Funding: Work supported by NSW Health for the NSW Vaccine, Infection and Immunology Collaborative (VIIM).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647467 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2024.105461 | DOI Listing |
Neurochem Res
September 2025
International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
The concept of the central nervous system (CNS) reserve emerged from the mismatch often observed between the extent of brain pathology and its clinical manifestations. The cognitive reserve reflects an "active" capacity, driven by the plasticity of CNS cellular components and shaped by experience, learning, and memory processes that increase resilience. We propose that neuroglial cells are central to defining this resilience and cognitive reserve.
View Article and Find Full Text PDFElife
September 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
Innate immune cells can acquire a memory phenotype, termed trained immunity, but the mechanism underlying the regulation of trained immunity remains largely elusive. Here, we demonstrate that inhibition of Aurora kinase A (AurA) dampens trained immunity induced by β-glucan. ATAC-seq and RNA-seq analysis reveal that AurA inhibition restricts chromatin accessibility of genes associated with inflammatory pathways such as JAK-STAT, TNF, and NF-κB pathways.
View Article and Find Full Text PDFmBio
September 2025
Corner Therapeutics, Watertown, Massachusetts, USA.
Unlabelled: Dendritic cells (DCs) are the primary inducers of immunity induced by infection or vaccination. To stimulate durable T cell-mediated immunity, multiple DC activities are required. DCs must present antigen, express costimulatory molecules, and secrete inflammatory cytokines to direct T cell activation.
View Article and Find Full Text PDFJ Integr Neurosci
August 2025
Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, 100853 Beijing, China.
Neurocognitive disorders represent a significant global health challenge and are characterized by progressive cognitive decline across conditions including Alzheimer's disease, mild cognitive impairment, and diabetes-related cognitive impairment. The hippocampus is essential for learning and memory and requires intact neuroplasticity to maintain cognitive function. Recent evidence has identified the brain insulin signaling pathway as a key regulator of hippocampal neuroplasticity through multiple cellular processes including synaptic plasticity, neurotransmitter regulation, and neuronal survival.
View Article and Find Full Text PDFTransl Neurosci
January 2025
Department of Anesthesia, The Second Affiliated Hospital of Xi'an JiaoTong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China.
Background: As a non-competitive blocker of the -methyl-d-aspartate receptor, ketamine is widely used for anesthesia and pain relief in clinical settings. However, certain neurological side effects may appear if it is used for the long term. According to clinical observations, anesthetic doses of ketamine trigger postoperative neurocognitive dysfunction in elderly patients, while subanesthetic doses of ketamine suppress the postoperative neuronal pyroptosis in the hippocampus, ameliorating the cognitive function.
View Article and Find Full Text PDF