Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) are currently used to treat mutant cancers. Although PARPi sensitivity has been attributed to homologous recombination (HR) defects, other roles of HR factors have also been linked to response to PARPi, including replication fork protection. In this study, we investigated PARPi sensitivity in ovarian cancer patient-derived xenograft (PDX) models in relation to HR proficiency and replication fork protection. Analysis of status showed that in our cohort of 31 ovarian cancer PDX models 22.6% harbored a alteration (7/31), and 48.3% (15/31) were genomically unstable as measured by copy number alteration analysis. , PARPi olaparib response was measured in 15 selected PDX models. Functional assessment of HR using irradiation-induced RAD51 foci formation identified all olaparib-sensitive PDX models, including four models without alterations. In contrast, replication fork protection or replication speed in tumor tissue did not correlate with olaparib response. Targeted panel sequencing in olaparib-sensitive models lacking alterations revealed a MUS81 variant as a possible mechanism underlying PARPi sensitivity. Combined, we show that RAD51 analysis effectively predicts olaparib response and revealed a subset of PARPi-sensitive, HR-deficient ovarian cancer PDX models, lacking a BRCA1/2 alteration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604054PMC
http://dx.doi.org/10.1093/narcan/zcae044DOI Listing

Publication Analysis

Top Keywords

pdx models
20
replication fork
16
ovarian cancer
16
parpi sensitivity
12
fork protection
12
olaparib response
12
cancer patient-derived
8
patient-derived xenograft
8
models
8
cancer pdx
8

Similar Publications

Purpose: NOTCH3 is increasingly implicated for its oncogenic role in many malignancies, including meningiomas. While prior work has linked NOTCH3 expression to higher-grade meningiomas and treatment resistance, the metabolic phenotype of NOTCH3 activation remains unexplored in meningioma.

Methods: We performed single-cell RNA sequencing on NOTCH3 + human meningioma cell lines.

View Article and Find Full Text PDF

Exosomal Proteome from Hepatocellular Carcinoma Patient-Derived Xenograft Mice Serves as Identity of Liver Cancer.

J Proteome Res

September 2025

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China.

Hepatocellular carcinoma (HCC) constitutes approximately 90% of liver cancers, yet its early detection remains challenging due to the low sensitivity of current diagnostic methods and the difficulty in identifying minimal cancer cells within the body. This study employed a patient-derived xenograft (PDX) mouse model to screen for biomarkers, leveraging its advantage of low background interference compared to human serum exosome studies. Using a novel microextraction technique, exosomes were isolated from just one microliter of serum from HCC PDX mice, followed by proteomic profiling.

View Article and Find Full Text PDF

Vitamin D Binding Protein, a Ligand of Integrin beta 1, Motivates Both Tumor Cells and Schwann Cells to Promote Perineural Invasion in Pancreatic Ductal Adenocarcinoma.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Perineural invasion (PNI) is a common pathological characteristic of pancreatic ductal adenocarcinoma (PDAC), closely linked to postoperative recurrence, metastasis, and unfavorable prognosis. Nevertheless, the precise mechanisms that govern PNI in PDAC remain poorly elucidated. Here, group-specific component protein (GC) is identified as one of the most significantly upregulated genes related to PNI, primarily derived from malignant ductal cells compared to other cell types.

View Article and Find Full Text PDF

The translatability of patient-derived xenograft (PDX)-generated clinical data into patient-specific outcomes for therapeutic guidance is limited by the challenges in generalizability of models across patients, treatments, and cancer types. Previously, machine learning (ML) models have been developed for the two most abundant cancer types, i.e.

View Article and Find Full Text PDF

An integrated approach is proposed to rapidly evaluate the effects of anticancer treatments in 3D models, combining a droplet-based microfluidic platform for spheroid formation and single-spheroid chemotherapy application, label-free morphological analysis, and machine learning to assess treatment response. Morphological features of spheroids, such as size and color intensity, are extracted and selected using the multivariate information-based inductive causation algorithm, and used to train a neural network for spheroid classification into viability classes, derived from metabolic assays performed within the same platform as a benchmark. The model is tested on Ewing sarcoma cell lines and patient-derived xenograft (PDX) cells, demonstrating robust performance across datasets.

View Article and Find Full Text PDF