98%
921
2 minutes
20
Multi-component copolymerized donors (MCDs) hold great promise for improving both the efficiency and mechanical robustness of flexible organic solar cells (f-OSCs) owing to their facile molecular tunability and advantageous one-pot copolymerization. However, despite the excellent crystallinity imparted by their highly conjugated polymer backbone, MCDs often struggle to retain photovoltaic performance under large external deformations, limiting their applicability in wearable devices. Herein, we developed a novel series of flexible linker-sequential block MCDs (Fs-MCDs), specifically PM6-Cl-b-D18-Cl-BTB, PM6-Cl-b-D18-Cl-BTH, and PM6-Cl-b-D18-Cl-BTD, by precisely incorporating flexible functional groups into the conjugated polymer skeleton. This design strategy introduced highly effective tensile active sites, resulting in remarkable mechanical durability, with PM6-Cl-b-D18-Cl-BTD achieving crack-onset strain (COS) values of 49.88 % in pristine films and 31.29 % in blends. The nearly 50 % COS in pristine films represents one of the highest values reported for Fs-MCD-based OSCs, marking a significant milestone in advancing f-OSC. Additionally, PM6-Cl-b-D18-Cl-BTD demonstrated excellent photovoltaic performance, with efficiencies of 18.09 % in rigid binary and 19.05 % in ternary, as well as 16.63 % in flexible OSCs. It also showed impressive device stability in invert OSC (T=9,078 h). This unique molecular design strategy provides a promising avenue for synergistically improving the photovoltaic performance, mechanical properties, and device stability of f-OSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202420121 | DOI Listing |
J Comput Chem
September 2025
Department of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur, Bangladesh.
This study presents a comprehensive first-principles and device-performance investigation of alkali metal-based anti-perovskites ZBrO (Z = K, Rb, Cs, and Fr) for advanced optoelectronic and photovoltaic applications. Using density functional theory (DFT) with GGA-PBE and mGGA-rSCAN functionals, we analyzed the structural, electronic, optical, mechanical, phonon, population, and thermoelectric properties of these compounds. All ZBrO materials exhibit direct band gaps and strong optical absorption in the visible-UV spectrum.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
A highly sensitive, self-powered position-sensitive detector (PSD) based on a PEDOT:PSS/Si heterojunction is prepared. Band structure optimization via FS-300 additive doping significantly enhances the built-in electric field, achieving a maximum open-circuit voltage of 0.45 V (0.
View Article and Find Full Text PDFSmall
September 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
This study presents a novel carbazole derivative functionalized with hydroxy diphosphonic acid groups (HDPACz) as an efficient annealing-free hole transport layer (HTL) through strong bidentate anchoring to indium tin oxide (ITO). Compared to conventional mono-phosphonic acid counterparts, HDPACz demonstrates superior ITO surface coverage and interfacial dipole, effectively modulating the work function of ITO. Theoretical calculations reveal enhanced adsorption energy (-3.
View Article and Find Full Text PDFRSC Adv
September 2025
School of Engineering and Technology, National Textile University 37640 Faisalabad Pakistan
[This retracts the article DOI: 10.1039/D4RA01544D.].
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
M. Kumarasamy College of Engineering, Karur, 639113, Tamil Nadu, India.
Energy production from renewable resources remains a leading focus in sustainable power generation. Recently, bifacial photovoltaic (BPV) systems have gained global attention for their enhanced energy yield. In this study, seashell waste was repurposed as an alternative reflector material for BPV modules.
View Article and Find Full Text PDF