Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: Hepatorenal syndrome - Acute Kidney Injury (HRS-AKI) is a severe complication of decompensated cirrhosis that is challenging to predict. Sentiment analysis, a computational process of identifying and categorizing opinions and judgment expressed in text, may enhance traditional prediction methodologies based on structured variables. Large language models (LLMs), such as generative pretrained transformers (GPTs), have demonstrated abilities to perform sentiment analyses on non-clinical texts. We sought to determine if GPT-performed sentiment analysis could improve upon predictions using clinical covariates alone in the prediction of HRS-AKI.

Methods: Adult patients admitted to a single academic medical center with decompensated cirrhosis and AKI. We used a protected health information (PHI) compliant version of Microsoft Azure OpenAI GPT-4o to derive a sentiment score ranging from 0 to 1 for HRS-AKI, and conduct natural language processing (NLP) extraction of clinical terms associated with HRS-AKI in clinical notes. The area under the receiver operator curve (AUROC) was compared in logistic regression models incorporating structured variables (socio-demographics, MELD 3.0, hemodynamic parameters) with compared to without sentiment scores and NLP-extracted clinical terms.

Results: In our cohort of 314 participants, higher sentiment score was associated with the diagnosis of HRS-AKI (OR 1.33 per 0.1, 95% CI 1.02-1.79) in multivariate models. AUROC of the baseline model using structured clinical covariates alone was 0.639. With the addition of the GPT-4o derived sentiment score and clinical terms to structured covariates, the final model yielded an improved AUROC of 0.758 (p=0.03).

Conclusions: Clinical texts contain large amounts of data that are currently difficult to extract using standard methodologies. Sentiment analysis and NLP-based variable derivation with GPT-4o in clinical application is feasible and can improve the prediction of HRS-AKI over traditional modeling methodologies alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601740PMC
http://dx.doi.org/10.1101/2024.11.13.24317220DOI Listing

Publication Analysis

Top Keywords

sentiment analysis
16
decompensated cirrhosis
12
sentiment score
12
clinical
9
large language
8
language models
8
hepatorenal syndrome
8
sentiment
8
structured variables
8
clinical covariates
8

Similar Publications

Analyzing Reddit Social Media Content in the United States Related to H5N1: Sentiment and Topic Modeling Study.

J Med Internet Res

September 2025

Artificial Intelligence and Mathematical Modeling Lab, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.

Background: The H5N1 avian influenza A virus represents a serious threat to both animal and human health, with the potential to escalate into a global pandemic. Effective monitoring of social media during H5N1 avian influenza outbreaks could potentially offer critical insights to guide public health strategies. Social media platforms like Reddit, with their diverse and region-specific communities, provide a rich source of data that can reveal collective attitudes, concerns, and behavioral trends in real time.

View Article and Find Full Text PDF

In this paper, we study the impact of momentum, volume and investor sentiment on U.S. tech sector stock returns using Principal Component Analysis-Hidden Markov Model (PCA-HMM) methodology.

View Article and Find Full Text PDF

Background: Lesbian, gay, bisexual, transgender, queer/questioning, intersex, asexual (LGBTQIA+) researchers and participants frequently encounter hostility in virtual environments, particularly on social media platforms where public commentary on research advertisements can foster stigmatization. Despite a growing body of work on researcher virtual hostility, little empirical research has examined the actual content and emotional tone of public responses to LGBTQIA+-focused research recruitment.

Objective: This study aimed to analyze the thematic patterns and sentiment of social media comments directed at LGBTQIA+ research recruitment advertisements, in order to better understand how virtual stigma is communicated and how it may impact both researchers and potential participants.

View Article and Find Full Text PDF

The COVID-19 pandemic has revealed the complex interplay between national self-interest and global cooperation. Media communication can contribute to the formation of national identity and promote nationalist themes, particularly in times of crisis. Media portrayals of the nation during a pandemic are informative, since nationalism, specifically health nationalism, may undermine the popular appetite for and effectiveness of global response efforts.

View Article and Find Full Text PDF

Diagnostic and transition accuracy of natural language processing in high risk for psychosis individuals: A systematic review.

Asian J Psychiatr

September 2025

Department of Psychiatry and Mental Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Translational Psychiatry Laboratory (Psiquislab), Faculty of Medicine, Universidad de Chile, Santiago, Chile; Millennium Nucleus to Improve the Mental Health of Adolescents and Youths (IMHAY), San

Background: Schizophrenia spectrum disorders often emerge in adolescence or early adulthood and are a leading cause of global disability. Early identification of clinical high‑risk for psychosis (CHR‑P) can reduce comorbidity and shorten untreated psychosis duration, yet clinician‑administered tools (e.g.

View Article and Find Full Text PDF