98%
921
2 minutes
20
Synthetic opioids like fentanyl are highly potent and prevalent in the illicit drug market, leading to tolerance, dependence, and opioid use disorder (OUD). Chronic opioid use disrupts sleep and circadian rhythms, which persist even during treatment and abstinence, increasing the risk of relapse. The body's molecular clock, regulated by transcriptional and translational feedback loops, controls various physiological processes, including the expression of endogenous opioids and their receptors. The circadian transcription factor NPAS2, highly expressed in the nucleus accumbens, may have a crucial function in opioid-related behaviors. Our study found sex-specific roles for NPAS2-mediated reward behaviors in male and female mice, including in fentanyl seeking and craving. We also identified specific cell types and transcriptional targets in the nucleus accumbens of both mice and humans by which NPAS2 may mediate the impact of fentanyl on brain physiology and in opioid reward-related behaviors. Ultimately, our findings begin to uncover the mechanisms underlying circadian rhythm dysfunction and opioid addiction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601467 | PMC |
http://dx.doi.org/10.1101/2024.11.12.623242 | DOI Listing |
Mar Life Sci Technol
August 2025
Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, and The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000 China.
Unlabelled: The distribution of (Euphrasen, 1788) spans a pronounced latitudinal-environmental gradient from the subtropical to the subpolar zones. The species is reported to have multiple stocks along coastal China, exhibiting different spawning behaviors and habitat preferences. Such ecological variations might imply potential genetic divergence and local adaptation.
View Article and Find Full Text PDFFront Neurosci
August 2025
Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Introduction: Siestas, or daytime naps, play a critical role in relieving sleep pressure and maintaining physiological balance. However, the effects of siesta disruption remain largely unexplored.
Methods: In this study, we disrupted the natural siesta period (ZT20-23) through daily bedding changes for 2 weeks and examined its effects on overall stress levels, sleep architecture, behavior, and transcriptional responses in the frontal cortex.
Biochem Biophys Rep
December 2025
Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA.
The circadian clock in the suprachiasmatic nucleus and peripheral tissues functions to regulate key physiological and cellular systems in a cycle approximating 24 h. Understanding the ontogeny of the circadian clock mechanism during mammalian development is incomplete. Accordingly, we used the mouse as a model and a previously published RNAseq dataset to determine when expression of core genes regulating the circadian clock increase in transcript abundance in fetal and postnatal brain, heart, liver, and kidney.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.
View Article and Find Full Text PDFFungal Biol
October 2025
Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA. Electronic address:
In many model organisms, the circadian system has been proposed to comprise multiple oscillators that interact to promote accuracy of the clock as well as intricacies of rhythmic outputs. In Neurospora crassa, the circadian transcriptional/translational loop comprising of the FRQ (Frequency) and WCC (White Collar Complex) proteins has been instrumental in explaining many attributes of the clock including entrainment and rhythms in development and gene expression; in addition, some non-circadian oscillations can be unmasked when the FRQ-WCC feedback loop is eliminated. These rhythms have often lost defining circadian characteristics and are potentially controlled by other oscillators, termed FRQ-less oscillators (FLOs) in Neurospora.
View Article and Find Full Text PDF