Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Currently, the diagnosis of delirium is solely based on clinical observation, lacking objective diagnostic tools, and the regulatory networks and pathological mechanisms behind it are not yet fully understood. Exosomes have garnered considerable interest as potential biomarkers for a variety of illnesses. This research aimed to delineate both the proteomic and metabolomic landscapes inherent to exosomes, assessing their diagnostic utility in postoperative delirium (POD) and understanding the underlying pathophysiological frameworks. Integrated analyses of proteomics and metabolomics were conducted on exosomes derived from plasma of individuals from both the non-postoperative delirium (NPOD) control group and the POD group. Subsequently, the study utilized the Connectivity Map (CMap) methodology for the identification of promising small-molecule drugs and carried out molecular docking assessments to explore the binding affinities with the enzyme MMP9 of these identified molecules. We identified significant differences in exosomal metabolites and proteins between the POD and control groups, highlighting pathways related to neuroinflammation and blood-brain barrier (BBB) integrity. Our CMap analysis identified potential small-molecule therapeutics, and molecular docking studies revealed two compounds with high affinity to MMP9, suggesting a new therapeutic avenue for POD. This study highlights MMP9, TLR2, ICAM1, S100B, and glutamate as key biomarkers in the pathophysiology of POD, emphasizing the roles of neuroinflammation and BBB integrity. Notably, molecular docking suggests mirin and orantinib as potential inhibitors targeting MMP9, providing new therapeutic avenues. The findings broaden our understanding of POD mechanisms and suggest targeted strategies for its management, reinforcing the importance of multidimensional biomarker analysis and molecular targeting in POD intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603267PMC
http://dx.doi.org/10.1038/s41598-024-80865-6DOI Listing

Publication Analysis

Top Keywords

molecular docking
12
postoperative delirium
8
bbb integrity
8
pod
7
exploring molecular
4
molecular mechanisms
4
mechanisms postoperative
4
delirium
4
delirium multi-omics
4
multi-omics strategies
4

Similar Publications

The interactions of three berberine mid-chain fatty acid salts ([BBR][C], n = 6, 7, 8) with lysozyme (Lyz) are investigated in detail using multi-spectroscopic and molecular docking techniques. Steady-state fluorescence and UV-visible absorption experiments suggest that the binding mechanism of [BBR][C] on Lyz is a static quenching with a binding ratio of 1:1. The compound [BBR][C] exhibits a moderate binding affinity toward Lyz.

View Article and Find Full Text PDF

Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).

View Article and Find Full Text PDF

Warm temperature-induced autophagy mediates selective degradation of TIMING OF CAB EXPRESSION 1 thus promoting plant thermomorphogenesis.

Plant Cell

September 2025

Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.

Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.

View Article and Find Full Text PDF

The global rise in antibiotic resistance demands the urgent development of new antibacterial agents. This study investigated the antibacterial potential of four synthesized methoxy and thiophene chalcone derivatives (designated 3a, 4a, 3b, and 4b) against clinically relevant bacterial pathogens. These compounds were prepared through Claisen-Schmidt condensation, while their chemical structures were verified through applying Fourier-transform infrared, mass spectrometry, H nuclear magnetic resonance (NMR), and C NMR.

View Article and Find Full Text PDF

Hippophae salicifolia, commonly known as sea buckthorn, is native to the Indian Himalayan region. This study is the first to comprehensively assess the phytochemical profile and biological activities of H. salicifolia leaves extracted through maceration, infusion, and percolation (Soxhlet apparatus) methods.

View Article and Find Full Text PDF