98%
921
2 minutes
20
Human activity and climate change are widely considered to be primarily responsible for the extinction of Galliformes birds. Due to a decline in population, the Reeves's pheasant (), a member of the Galliformes family, was recently elevated to first-class national protected status in China. However, determining the causal factors of their extinction and carrying out protection measures appear to be challenging owing to a lack of long-term data with high spatial and temporal resolutions. Here, based on a national field survey, we used habitat suitability models and integrated data on geographical environment, road development, land use, and climate change to predict the potential changes in the distribution and connectivity of the habitat of Reeves's pheasant from 1995 to 2050. Furthermore, ecological corridors were identified using the minimum cumulative resistance (MCR) model. The prioritized areas for habitat restoration were determined by integrating the importance indices of ecological sources and corridors. Our results indicated that both land use and climate change were linked to the increased habitat loss for the Reeves's pheasant. In more recent decades, road construction and land use changes have been linked to a rise in habitat loss, and future climate change has been predicted to cause the habitat to become even more fragmented and lose 89.58% of its total area. The ecological corridor for Reeves's pheasant will continue to decline by 88.55%. To counteract the negative effects of human activity and climate change on the survivorship of Reeves's pheasant, we recommend taking immediate actions, including bolstering cooperation among provincial governments, restoring habitats, and creating ecological corridors among important habitats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595527 | PMC |
http://dx.doi.org/10.1002/ece3.70618 | DOI Listing |
J Therm Biol
September 2025
Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:
In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.
View Article and Find Full Text PDFJMIR Public Health Surveill
September 2025
Earth Observation Centre (EOC), Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
Background: Neighborhoods resulting from rapid urbanization processes are often saturated with eateries for local communities, potentially increasing exposure to unhealthy foods and creating diabetogenic residential habitats.
Objective: We examined the association between proximity of commercial food outlets to local neighborhood residences and type 2 diabetes (T2D) cases to explore how local T2D rates vary by location and provide policy-driven metrics to monitor food outlet density as a potential control for high local T2D rates.
Methods: This cross-sectional ecological study included 11,354 patients with active T2D aged ≥20 years geocoded using approximate neighborhood residence aggregated to area-level rates and counts by subdistricts (mukims) in Penang, northern Malaysia.
Int J Radiat Biol
September 2025
Department of Geography, Nara Women's University, Nara, Japan.
Purpose: The number of oxygen vacancies in quartz measured by electron spin resonance (ESR) as the intensity of the E' center has been used to investigate the provenance of the sediments and has been found to be a good proxy in discussing the direction and intensity of the wind system in the past. While its temporal variations have been examined using marine sediments. The present study aimed to show that terrestrial sediments are also useful for such studies on climate change when it is continuous.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Vegetation phenology, i.e., seasonal biological events such as leaf-out and leaf-fall, regulates local climate through biophysical processes like evapotranspiration (ET) and albedo.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Australian Antarctic Division, Kingston, TAS 7050, Australia.
Antarctic krill () is the central prey species in the Southern Ocean food web, supporting the largest and fastest-growing fishery in the region, managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Climate change is threatening krill populations and their predators, while current catch limits do not take into account climate variability or krill population dynamics. In 2024, CCAMLR was unable to renew its spatial catch limits, highlighting the urgent need for improved management of the krill fishery to prevent any harm to the Southern Ocean ecosystem.
View Article and Find Full Text PDF