98%
921
2 minutes
20
Polymers have transformed sportswear, bringing forth a new age of innovation. Because of these flexible materials, athletes in many disciplines benefit from lighter, more durable gear. Polymers significantly improve sports performance, ranging from carbon-fiber tennis rackets that increase power to cushioning polymers that reduce joint impact in running shoes. This review provides a basic understanding of polymers, classifications, and their potential role in sporting goods. It also explores lightweight design, impact resistance, and even smart sports gear. Further, the fabrication procedures of various polymer matrix composites have been explored for sporting goods applications. However, this work briefly discussed the challenges and limitations associated with polymers in sports goods, including cost considerations, durability, longevity, and regulatory compliance. It provides insight into future developments in this field as well as the multifaceted role of polymers in sports goods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589808 | PMC |
http://dx.doi.org/10.1039/d4ra06544a | DOI Listing |
Mikrochim Acta
September 2025
Faculty of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China.
A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.
View Article and Find Full Text PDFSpinal Cord Ser Cases
September 2025
Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
Study Design: Concurrent mixed methods case series.
Objectives: To examine the feasibility and effect of a peer-facilitated, remote handcycling sport program on physical, psychological, and social health of individuals with spinal cord injury or disease (SCI/D) aged ≥50 years.
Setting: Participants' homes.
Clin Exp Dent Res
October 2025
Medical Centre for Orthopaedics and Sports Dentistry, Leipzig, Germany.
Objectives: Dental trauma is a frequent injury in contact sports such as handball an basketball. This study aimed to evaluate preventive measures in dental traumatology and assess the knowledge of medical teams in elite German handball and basketball.
Material And Methods: From March to June 2024, supervisors of 1st and 2nd German Bundesliga handball (HB) and basketball (BB) teams were invited via email to complete an online questionnaire (Socey Survey).
Anal Chim Acta
November 2025
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China. Electronic address:
Background: During intense exercise, anaerobic metabolism predominantly produces energy in the body, resulting in lactic acid (LA) accumulation, which contributes to muscle fatigue and soreness and may also impair neurological and cardiovascular functions. In endurance sports, the lactate threshold (LT) is a key indicator of an athlete's capacity to clear and utilize LA, directly influencing athletic performance and endurance. Therefore, LA detection is crucial for assessing the physical condition of both athletes and the general population, as well as for optimizing training programs.
View Article and Find Full Text PDFPLoS One
September 2025
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, United States of America.
Accurately estimating kinetic metrics, such as braking and propulsion forces, in real-world running environments enhances our understanding of performance, fatigue, and injury. Wearable inertial measurement units (IMUs) offer a potential solution to estimate kinetic metrics outside the lab when combined with machine learning. However, current IMU-based kinetic estimation models are trained and evaluated within a single environment, often on lab treadmills.
View Article and Find Full Text PDF