98%
921
2 minutes
20
The interfacial photothermal-photocatalytic systems can generate clean water while purifying wastewater containing organic pollutants, but the impact of thermal convection on synergistic effects remains unexplored. This paper aims to regulate the thermal convection at the interface to significantly enhance the synergistic effect of interfacial photothermal-photocatalytic systems. A novel heterogeneous structure comprising iron-based metal-organic frameworks and multi-walled carbon nanotubes with a gelatin-polyvinyl alcohol (PVA) double network hydrogel (MWCNTs@NM88B/PVA/gelatin hydrogel, denoted as MMH) is developed and employed in the construction of the solar-driven interfacial evaporation (SIE) system. The system shows high activity for solar water evaporation and simultaneous photocatalytic degradation of organic pollutants. MMH demonstrates an evaporation rate of 2.84 kg m h, achieving an efficiency of 95.3% under 1 sun. COMSOL simulations reveal that the implementation of a three-phase interface configuration with SIE technology significantly boosts thermal convection, effectively diminishing the barrier to gas release from the reaction system and consequently enhancing the efficiency of the interfacial photothermal-photocatalytic process. Furthermore, the potential mechanism of photocatalytic decomposition of organic pollutants in MMH/HO/visible light reaction system is proposed by combining the experiments of KPFM, in situ XPS, and ESR spectra. Therefore, this work offers a fresh perspective on evaluating the impact of thermal convection on water evaporation and pollutant degradation in interface photothermal-photocatalytic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202416283 | DOI Listing |
ACS Nano
September 2025
State Key Lab of New Ceramic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
SnSe is a layered semiconductor with intrinsically low thermal conductivity, making it a promising candidate for thermoelectric and thermal management applications. However, detailed measurements of the intrinsic thermal conductivity of SnSe nanosheets grown by chemical vapor deposition (CVD) remain scarce. Here, monocrystalline SnSe nanosheets were synthesized by CVD, with systematic investigation of thickness-dependent in-plane thermal conductivity.
View Article and Find Full Text PDFSci Prog
September 2025
School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China.
To address the growing demand for temperature control precision and uniformity in wafer processing, a specialized electrostatic chuck temperature control system based on thermal control coatings is proposed, aiming to enhance thermal management robustness and homogeneity. This study employs a zoned control methodology using metal-oxide conductive coatings on silicon carbide wafer heating plates. A quadrant-based thermal control coating model was established, and finite element analysis was conducted to compare temperature distribution characteristics across three geometric configurations: sectorial, spiral, and zoned designs.
View Article and Find Full Text PDFChaos
September 2025
Advanced Analytics, Nevada National Security Sites (NNSS), North Las Vegas, Nevada 83090, USA.
In this work, we explore a class of extensions to the 3D Lorenz (3DL) system by considering an alternative incompressible natural convection model. Famously, the 3DL system is recovered when the Oberbeck-Boussinesq (OB) approximation is applied to the 2D Rayleigh-Bénard problem. The OB model is incompressible, accounting for variations in fluid density exclusively in terms of buoyancy forces, which are modeled and closed by an equation of state that is linear in temperature.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Earth and Planetary Sciences, ETH Zürich, Zürich, 8092, Switzerland.
The occurrence of tectonic plate reorganization events is evident throughout the geologic record and appears to be associated with the cessation of mature and/or initiation of new subduction. Subduction initiation that produced the bend in the Hawaii-Emperor seamount chain resulted in the most recent upheaval of plate motion and engendered dramatic changes in plate velocities. Here, applying a method for identifying plate boundaries in a numerical global mantle convection model, we calculate Euler vector time series of self-consistently generated plates over a period of approximately 144 Myr.
View Article and Find Full Text PDFJ Plast Reconstr Aesthet Surg
August 2025
Department of Plastic, Reconstructive and Aesthetic Surgery, Multidisciplinary Breast Clinic, Antwerp University Hospital, University of Antwerp, Wilrijkstraat, 10, Antwerp B-2650, Belgium.
Dynamic infrared thermography (DIRT) is a non-invasive technique for perforator mapping in Deep Inferior Epigastric artery Perforator (DIEP) flap breast reconstruction. Its accuracy is highly dependent on the cooling technique used to enhance thermal contrast. This study compares eleven cooling techniques based on cooling uniformity, artifact minimization, and usability.
View Article and Find Full Text PDF