Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This research aims to evaluate and monitor the effectiveness of vegetation ecological restoration by integrating Multispectral Remote Sensing (MRS) and laser point cloud (LPC) monitoring technologies. Traditional vegetation restoration monitoring methods often face challenges of inaccurate data and insufficient coverage, and the use of MRS or LPC techniques alone has its limitations. Therefore, to more accurately monitor the vegetation restoration status, this study proposes a new monitoring method that combines the advantages of the large-scale coverage of MRS technology and the high-precision three-dimensional structural data analysis capability of LPC technology. This new method was applied in the Daqing oilfield area of China, aiming to provide effective ecological restoration assessment methods through the precise monitoring and analysis of regional vegetation growth and coverage. The results showed that there was a negative correlation between the vegetation humidity index and vegetation growth in the Daqing oilfield in 2023. The estimated monitoring effect of the research method could reach over 90%, and the coverage area of restoration in the monitoring year increased by 7509 km. The research technology was closer to the actual coverage situation. The simulation image showed that the vegetation coverage in the area has significantly improved after returning farmland to forests. Therefore, the technical methods used can effectively monitor the ecological restoration of vegetation, which has great research significance for both vegetation restoration and monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597978PMC
http://dx.doi.org/10.3390/plants13223164DOI Listing

Publication Analysis

Top Keywords

ecological restoration
16
vegetation restoration
12
restoration monitoring
12
vegetation
10
vegetation ecological
8
restoration
8
restoration integrating
8
integrating multispectral
8
multispectral remote
8
remote sensing
8

Similar Publications

Balancing socio-economic development with environmental quality in estuaries requires reliable tools for ecological assessment and informed management. Although various biological and (geo)chemical indices have been formulated to evaluate ecological quality status (EcoQS), transitional systems such as estuaries remain challenging to assess due to steep natural gradients and intense anthropogenic pressures, which can compromise the effectiveness of conventional indices. This study applied a practical, multi-criteria sediment assessment to evaluate benthic EcoQS in the Sado estuary, SW Portugal - a socio-ecological system strongly influenced by human activity.

View Article and Find Full Text PDF

The binding interactions between metal ions and dissolved organic matter (DOM) are ubiquitous in freshwater/marine aquatic environments where both coexist. Distinct from free metal ions or DOM, DOM-metal ions (DOM-Me) complexes have emerged as contaminants of emerging concern, primarily due to their altered physicochemical properties, modified migration and transformation patterns, enhanced environmental persistence, and changed ecotoxicity. However, based on the multi-source heterogeneity of DOM and the diversity of metal ions, systematic investigations into the interaction mechanisms and environmental implications of DOM-Me complexes in water environments remain scarce.

View Article and Find Full Text PDF

Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.

View Article and Find Full Text PDF

Land degradation (LD) is a critical environmental challenge caused by human activities and climate change. Reversing degraded land requires effective LD monitoring. The UN Sustainable Development Goal (SDG) indicator 15.

View Article and Find Full Text PDF

Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.

View Article and Find Full Text PDF