98%
921
2 minutes
20
Vanillic acid (VA) regulates various plant physiological and biochemical processes upon different environmental stresses to enhance their tolerance. This study aimed to evaluate the protective effect of VA on growth and physiology, including osmoprotection, and antioxidant defense systems for enhancing higher tolerance by lowering oxidative damage against water deficit stress in tomatoes ( L. cv. BARI Tomato-16). Hydroponically grown tomato seedlings (8 d old) were pretreated with 50 µM VA for 2 days followed by water deficit stress (imposed by water withdrawal and 12% polyethylene glycol; PEG-6000) for 4 d. Drought stress inhibited the seedlings' growth by reducing water content and photosynthetic pigments contents, alleviating oxidative stress induced by a reactive oxygen species and methylglyoxal. A significant enhancement in growth, biomass accumulation, and photosynthetic pigment content was observed in VA-pretreated stress conditions. In addition, there was an improvement in the water status and proline content, along with modulated activities of the antioxidant responses, including both non-enzymatic and enzymatic components in leaves of VA-pretreated seedlings upon the water deficit. Vanillic acid significantly reduced the reactive oxygen species generation and decreased cellular membrane damage in drought-affected tomato seedlings. Methylglyoxal detoxification was ensured to a great extent in VA-pretreated stressed tomato seedlings by strengthening the glyoxalase enzymes' activities. Therefore, VA can be effective for protecting tomato seedlings by inducing a plant antioxidant defense and the methylglyoxal detoxification system and osmoregulation under drought stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597367 | PMC |
http://dx.doi.org/10.3390/plants13223114 | DOI Listing |
Environ Microbiol Rep
October 2025
DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
Natural soils are reservoirs of potentially beneficial microbes that can improve plant performance. Here, we isolated 75 bacterial strains from surface-sterilised roots of Arabidopsis thaliana (Arabidopsis) grown in a natural soil derived from an alder swamp. Culture-dependent isolation of individual strains from the roots, followed by monoassociation-based screening, identified seven bacteria that promoted Arabidopsis seedling weight.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Laboratorio de Bioinformática y Redes Complejas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Departamento de Ingeniería Genética, Unidad Irapuato, Irapuato, Guanajuato, Mexico.
Tomato brown rugose fruit virus (ToBRFV) poses a global threat to tomato and pepper production due to its high transmissibility and adaptability. Understanding its genomic features and transmission mechanisms is critical for effective disease management. We characterized the genome and biological properties of a ToBRFV isolate from Mexico.
View Article and Find Full Text PDFPhysiol Plant
August 2025
Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
This study investigates the roles of strigolactones (SL) and endogenous hydrogen sulfide (HS) in regulating physiological processes in tomato seedlings under NaCl-induced stress. Exposure of the seedlings to 100 mM NaCl stress reduced K content by 21% while increasing Na accumulation by 69%, disrupting the K/Na ratio and impairing H-ATPase activity. However, the application of SL improved H-ATPase activity and K uptake and reduced Na accumulation.
View Article and Find Full Text PDFMicroorganisms
July 2025
College of Resource and Environment, Xinjiang Agricultural University, Urumqi 830052, China.
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology of crops. The strain H5 isolated from saline-alkali soil in Bachu of Xinjiang was studied through whole-genome analysis, functional annotation, and plant growth-promoting, salt-tolerant trait gene analysis.
View Article and Find Full Text PDFBMC Plant Biol
August 2025
Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
Research on L.‘s potential applications as a dietary supplement, medicinal herb and plant growth enhancer under biotic and abiotic stresses has increased recently. Our study aimed to investigate the phytochemical screening of Moringa leaf aqueous extract (MLAE) and to determine its antimicrobial activity against pathogenic bacteria and fungi.
View Article and Find Full Text PDF