Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cryphonectria hypovirus 1 (CHV1) is successful in controlling , the causal agent of chestnut blight, but little is known regarding its transmission to other fungi, for example the European . In this study, CHV1 was transmitted (circa 200,000-800,000 copies/microliter) to seven isolates from infected . Reverse transmission to virus-free (European 74 testers collection) was achieved, although it was less successful (250-55,000 copies/µL) and was dependent on the vegetative compatibility (VC) group. In , the virus infection led to colony colour change from pink to white and smaller colonies, dependent on the virus concentration. The virus was concentrated in the colony edges, and vertically transmitted to 77% of conidia. However, several in vitro experiments demonstrated that was always outcompeted by the blight fungus, only suppressing the pathogen between its 25-50% inoculum level. It presented good secondary capture only when acting as a pioneer. Two types of assays (individual and challenge inoculations) were undertaken. behaved as a saprotroph, while chestnut blight fungus behaved as an aggressive pathogen, and lesions after treatment with were no smaller in general, only when using cut branches. Overall, the results showed that infected was unable to control cankers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593397PMC
http://dx.doi.org/10.3390/ijms252212023DOI Listing

Publication Analysis

Top Keywords

cryphonectria hypovirus
8
hypovirus chv1
8
chestnut blight
8
blight fungus
8
transmission cryphonectria
4
chv1 vitro
4
vitro vivo
4
vivo testing
4
testing potential
4
potential biocontrol
4

Similar Publications

A Viral RNA Silencing Suppressor Modulates Reactive Oxygen Species Levels to Induce the Autophagic Degradation of Dicer-Like and Argonaute-Like Proteins.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.

Mounting evidence indicates that viruses exploit elevated reactive oxygen species (ROS) levels to promote replication and pathogenesis, yet the mechanistic underpinnings of this viral strategy remain elusive for many viral systems. This study uncovers a sophisticated viral counter-defense mechanism in the Cryphonectria hypovirus 1 (CHV1)-Fusarium graminearum system, where the viral p29 protein subverts host redox homeostasis to overcome antiviral responses. That p29 directly interacts with and inhibits the enzymatic activity of fungal NAD(P)H-dependent FMN reductase 1 (FMR1), leading to increased ROS accumulation and subsequent autophagy activation is demonstrated.

View Article and Find Full Text PDF

Calnexin, a calcium-binding protein, promotes correct protein folding and prevents incompletely folded glycopolypeptides from premature oxidation and degradation. Cryphonectria parasitica, an ascomycete fungus responsible for chestnut blight, poses a significant threat to the chestnut forest or orchards worldwide. Although various aspects of calnexin have been investigated, little is known about the impact of fungal viruses.

View Article and Find Full Text PDF

Cryphonectria hypovirus 1 (CHV1) is successful in controlling , the causal agent of chestnut blight, but little is known regarding its transmission to other fungi, for example the European . In this study, CHV1 was transmitted (circa 200,000-800,000 copies/microliter) to seven isolates from infected . Reverse transmission to virus-free (European 74 testers collection) was achieved, although it was less successful (250-55,000 copies/µL) and was dependent on the vegetative compatibility (VC) group.

View Article and Find Full Text PDF

Regional Variability of Chestnut () Tolerance Toward Blight Disease.

Plants (Basel)

October 2024

Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska 23, 10000 Zagreb, Croatia.

Since its introduction into Europe in the first half of the 20th century, has been gradually spreading across the natural range of the sweet chestnut ( Mill.), infecting the trees and causing lethal bark cankers. Serendipitously, a hyperparasitic Cryphonectria hypovirus 1 (CHV1), which attenuates virulence in combination with more tolerant European chestnut species, was able to ward off the worst effect of the disease.

View Article and Find Full Text PDF

Some mycoviruses can be considered as effective biocontrol agents, mitigating the impact of phytopathogenic fungi and consequently reducing disease outbreaks while promoting plant health. , the causal agent of chestnut blight and a highly destructive pathogen, experienced a notable decrease in its virulence with the identification of cryphonectria hypovirus 1 (CHV1), a naturally occurring biocontrol agent. In this study, two innovative diagnostic protocols designed for the accurate and efficient detection of CHV1 are introduced.

View Article and Find Full Text PDF