Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Food-derived peptides are usually safe natural drug candidates that can potentially inhibit the angiotensin-converting enzyme (ACE). The wet experiments used to identify ACE inhibitory peptides (ACEiPs) are time-consuming and costly, making it important and urgent to reduce the scope of experimental validation through bioinformatics methods. Here, we construct an ACE inhibitory peptide predictor (ACEiPP) using optimized amino acid descriptors (AADs) and long- and short-term memory neural networks. Our results show that combined-AAD models exhibit more efficient feature transformation ability than single-AAD models, especially the training model with the optimal descriptors as the feature inputs, which exhibits the highest predictive ability in the independent test (Acc = 0.9479 and AUC = 0.9876), with a significant performance improvement compared to the existing three predictors. The model can effectively characterize the structure-activity relationship of ACEiPs. By combining the model with database mining, we used ACEiPP to screen four ACEiPs with multiple reported functions. We also used ACEiPP to predict peptides from 21,249 food-derived proteins in the Database of Food-derived Bioactive Peptides (DFBP) and construct a library of potential ACEiPs to facilitate the discovery of new anti-ACE peptides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592644 | PMC |
http://dx.doi.org/10.3390/foods13223550 | DOI Listing |