A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effect of Structure on Osteogenesis of Bone Scaffold: Simulation Analysis Based on Mechanobiology and Animal Experiment Verification. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Porous scaffolds, whose mechanical and biological properties are greatly affected by structure, are new treatments for bone defects. Since bone repair is related to biomechanics, analyzing the osteogenesis in scaffolds based on mechanical stimulation may become a more effective method than traditional biological experiments. A tissue regeneration algorithm based on mechanical regulation theory was implemented in this study to evaluate the osteogenesis of classical scaffolds (Gyroid, I-WP, and Diamond). In vivo experiments were used to verify and supplement the simulation results. Different approaches to describing osteogenesis were discussed. Bone formation was more obvious inside the Gyroid scaffold and outside the I-WP scaffold, while the new bone was more sufficient and evenly distributed in the Diamond scaffold. The osteogenesis pattern of the bone scaffold in the simulation analysis was consistent with the results of animal experiments, and the bone volume calculated by the tissue fraction threshold method and the elastic modulus threshold method was very similar to the in vivo experiment. The mechanical responses mediated by structure affect the osteogenesis of bone scaffolds. This study provided and confirmed a simulation analysis method based on mechanical regulation theory, which is more efficient and economical for analyzing tissue healing in bioengineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592375PMC
http://dx.doi.org/10.3390/bioengineering11111120DOI Listing

Publication Analysis

Top Keywords

simulation analysis
12
based mechanical
12
bone
8
osteogenesis bone
8
bone scaffold
8
scaffold simulation
8
mechanical regulation
8
regulation theory
8
threshold method
8
scaffold
5

Similar Publications