Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The development of phantoms to reduce animal testing or to validate new instruments or operation techniques is of increasing importance. For this reason, a blood circulation phantom was developed to test a newly designed retractor system with an integrated oxygen sensor. This phantom was used to evaluate the impact of the 3D printed blood vessel on the measurement of the oxygen saturation.

Methods: A solution of nickel sulfate and copper sulfate was prepared as a substitute for real blood. The absorption spectra of these solutions were recorded and compared with those of blood. Subsequently, the oxygen sensor used was calibrated to the blood substitute. Additionally, blood vessels with a simplified geometry were designed and manufactured using inverted vat polymerization and an elastic material (Formlabs Elastic 50 A). To determine the orientation during the printing process, various vessels were printed. Measurements to assess the effects of disturbance (rotation of the vessels during measurements) on the sensor readouts were prepared.

Results: The impact of disturbances was verified through the rotation of the 3D printed vessels. It was demonstrated that a direct measurement on the disturbances led to outliers and higher values. An optimal orientation was determined to be a lateral placement (90° or 270°) of the sensor. Regarding the orientation of the vessels within the printing space, an orientation of 45° yielded the best results, as the individual layers had the least impact on the light emitted and received by the oxygen sensor.

Conclusion: The achieved results demonstrate the influence of the orientation of the vessel during 3D printing as well as the influence of the position of the vessel during the measurement using a conventional oxygen sensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600587PMC
http://dx.doi.org/10.1186/s41205-024-00246-7DOI Listing

Publication Analysis

Top Keywords

oxygen sensor
12
influence orientation
8
blood
8
blood vessels
8
vessels printing
8
blood substitute
8
conventional oxygen
8
vessel measurement
8
vessels
6
oxygen
6

Similar Publications

Controllable synthesis of -hexagonal ZnAl-LDHs nanosheets for high-performance room-temperature ethanol gas sensing.

Dalton Trans

September 2025

School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, 5340 Xiping Road, Beichen District, Tianjin, 300401, China.

Layered double hydroxides (LDHs) have attracted considerable attention in gas sensing applications due to their highly tunable chemical composition and unique two-dimensional layered architecture. In this study, a series of ZnAl-LDHs with varying Zn/Al molar ratios were synthesized a facile hydrothermal method, and their ethanol sensing performance at room temperature was systematically evaluated. The influence of composition on the structural, morphological, and electronic properties of the materials was thoroughly investigated using a suite of characterization techniques, including XRD, FTIR, SEM, TEM, BET, XPS, PL, and EPR.

View Article and Find Full Text PDF

Room Temperature Flexible Gas Sensor Based on MOF-Derived Porous Carbon Skeletons Loaded with ZnO Nanoparticles and DMF Detection.

ACS Appl Mater Interfaces

September 2025

Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.

Overcoming the persistent challenges of high operating temperatures and poor selectivity in metal oxide semiconductor (MOS) gas sensors, this work enhances defect sites in the sensing material through heterostructure construction and builds mesoporous architectures using MOF-derived carbon skeletons as templates. The synergistic effects of multiple mechanisms significantly improve gas-sensing performance, successfully fabricating a ZnO/PCS flexible room-temperature gas sensor with exceptional room-temperature DMF detection capabilities. The nitrogen-containing porous carbon skeletons (PCSs) template shows a stable mesoporous microstructure with large pore volume.

View Article and Find Full Text PDF

Since its introduction more than 30 years ago, the blood oxygenation level-dependent (BOLD) contrast remains the most widely used method for functional MRI (fMRI) in humans and animal models. The BOLD contrast is typically acquired with echo planar imaging (EPI) to obtain sensitization of the signal during the echo time (TE) to dynamic changes in deoxyhemoglobin content, while achieving high spatiotemporal resolution and full brain coverage. However, EPI-based fMRI also faces multiple shortcomings, including sensitivity to body motion, susceptibility-related signal dropouts, interference with multimodal sensors, and loud acoustic noise.

View Article and Find Full Text PDF

Nitric oxide (NO) is one of the crucial biological signaling molecules, yet achieving its selective and spatiotemporal detection in in-situ/invitro or biological systems at specific pH remains a significant challenge. Hence, a probe capable of directly detecting NO would be immensely valuable in understanding its reactivity and biological functions. Here, to develop a Cu(II)-based probe for selective NO detection, we synthesized a Cu(II)-complex (1) using a N3-tridentate ligand having a pendant dansyl fluorophore (L) and evaluated it's NO reactivity under varying pH conditions.

View Article and Find Full Text PDF

The carotid body mediates peak oxygen uptake during maximal physical exertion in rats.

J Physiol

September 2025

Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.

Cardiorespiratory responses to physical exercise are expected to meet the organism's metabolic demands. As carotid body (CB) glomus cells have been proposed as metabolic sensors, we sought to determine their contribution to peak oxygen uptake ( ) during exercise in rats. Adult male Wistar Kyoto rats underwent bilateral co-injection of two adeno-associated viruses (AAVs) at the CB bifurcation (AVV-TH-Cre-SV40 and AVV-hSyn-DREADD(Gi)-mCherry).

View Article and Find Full Text PDF