98%
921
2 minutes
20
Most embedding media for live and fixed samples were not designed for microscopy and have issues including long polymerization times, peak of toxicity toward the sample during the sol-gel transition, and irreversibility of this transition. Gels derived from biological sources are widely used in microscopy, but their precise composition is ill-defined and can vary between batches. Non-physiological temperatures and/or specific enzymatic solutions are often needed to revert the gel back to the sol state to allow sample recovery. Recovering the sample undamaged is important for multiple purposes, from the ability to release a living organism back into its environment and re-observe it at a later stage, to interrogating the sample once freed from the gel after imaging. We describe a supramolecular hydrogel that enables the observation of small living organisms using light microscopy, with simple sample recovery through vigorous pipetting with water. The organisms can be recovered alive and capable of further development into adulthood, which represents a significant advancement, as most other matrices require release conditions such as heating, the addition of chemicals, or mechanical disruption, which can damage or kill the embedded organisms. Furthermore, the gel is compatible with super-resolution multi-colour STED nanoscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589135 | PMC |
http://dx.doi.org/10.1038/s41598-024-76661-x | DOI Listing |
Nat Nanotechnol
September 2025
Department of Bioengineering, Rice University, Houston, TX, USA.
Maintaining safe and potent drug levels in vivo is challenging. Multidomain peptides assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery. However, their ability to extend release is typically limited by rapid drug diffusion.
View Article and Find Full Text PDFACS Macro Lett
September 2025
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Sulfone bonding is an emerging dipole-dipole interaction between sulfone groups. Herein, sulfone bonding is used for the first time for engineering tough hydrogels. Sulfone-bond-toughened hydrogels are prepared by copolymerizing acrylamide with a sulfone-functionalized monomer.
View Article and Find Full Text PDFACS Omega
September 2025
College of Science & College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
Pesticides are of great significance in ensuring food yield. However, the extensive use of pesticides has led to severe environmental pollution and significant economic losses. Chitosan-based pesticide delivery systems potentially present a favorable approach to enhance pesticide using efficiency.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, Stamford Street, London, SE1 9NH, UK.
As supramolecular assemblies, polypseudorotaxanes (PPR) exhibit inherent advantages in modular adaptability and structural programmability, with the potential to build tuneable platforms integrating various functionalities. Here we report the "one-pot" preparation of a self-assembled thiol-rich PPR (SPPR), where thiolated-α-cyclodextrins (SHαCD) spontaneously thread onto polymers, and are then crosslinked into a three-dimensional network by the thermally-triggered oxidation of thiols into disulfide bonds. The dynamic thiol groups along the SPPR provide remarkable modularity for the functionalization of thiophilic metal nanoparticles (NPs), exemplified by two application vectors.
View Article and Find Full Text PDFBiomaterials
August 2025
Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hef
Activation of p38 mitogen-activated protein kinase plays an important role in the progression of ventricular muscle inflammation after myocardial ischemia-reperfusion (MI/R). The inhibition of p38 activation in ischemic myocardium can reduce ventricular muscle remodeling post-MI. However, owing to the dynamic change of p38 in ischemic myocardium after MI, the clinical therapeutic effect of p38 inhibitors is insufficient.
View Article and Find Full Text PDF