98%
921
2 minutes
20
Objectives: Individuals change walking speed by regulating step frequency (SF), stride length (SL), or a combination of both (FL combinations). However, existing methods of walking speed estimation ignore this regulatory mechanism. This paper aims to achieve accurate walking speed estimation while enabling adaptation to inter-individual speed regulation strategies.
Methods: We first extracted thigh features closely related to individual speed regulation based on a single thigh mounted IMU. Next, an interval type-2 fuzzy inference system was used to infer and quantify the individuals' speed regulation intentions, enabling speed estimation independent of inter-individual gait patterns. Experiments with five subjects walking on a treadmill at different speeds and with different gait patterns validated our method.
Results: The overall root mean square error (RMSE) for speed estimation was 0.0704 ± 0.0087 m/s, and the RMSE for different gait patterns was no more than 0.074 ± 0.005 m/s.
Conclusions: The proposed method provides high-accuracy speed estimation. Moreover, our method can be adapted to different FL combinations without the need for individualised tuning or training of individuals with varying limb lengths and gait habits. We anticipate that the proposed method will help provide more intuitive speed adaptive control for rehabilitation robots, especially intelligent lower limb prostheses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/bmt-2024-0230 | DOI Listing |
J Urban Health
September 2025
Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium.
Timely access to comprehensive , high-quality emergency obstetric and neonatal care can prevent maternal and neonatal mortality but remains challenging in Benin. We examine geographic accessibility to childbirth care (CBC) in Grand Nokoué, the largest conurbation in Benin. We gathered data on boundaries, health facilities, road network, elevation, land cover, relative wealth, urbanicity, and geo-traced travel speeds over 45 days during the rainy season.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2025
Department of Physics, University of Louisiana at Lafayette, Lafayette, Louisiana 70503, USA.
A method is presented for determining the significant parameters, maximum wind speed and radius of maximum wind speed, of the surface winds associated with a hurricane. The method is based on Bayesian inversion, using Markov chain Monte Carlo sampling. Underwater acoustic measurements are used to estimate parameters in the axisymmetric Holland model for hurricane surface winds.
View Article and Find Full Text PDFJ Biopharm Stat
September 2025
Biostatistics and Research Decision Sciences, Merck & Co. Inc., North Wales, Pennsylvania, USA.
A randomized clinical trial with multiple experimental groups and one common control group is often used to speed up development to select the best experimental regimen or to increase the chance of success of clinical trials. Most of the time, multiple dose levels of an experimental drug or multiple combinations of one experimental drug with other drugs comprise multiple experimental groups. Because the experimental drug appears in multiple comparisons with a shared control group, multiple testing adjustments to control the family-wise type I error rate are needed.
View Article and Find Full Text PDFEvent-based sensors (EBS), with their low latency and high dynamic range, are a promising means for tracking unresolved point-objects. Conventional EBS centroiding methods assume the generated events follow a Gaussian distribution and require long event streams ($\gt 1$s) for accurate localization. However, these assumptions are inadequate for centroiding unresolved objects, since the EBS circuitry causes non-Gaussian event distributions, and because using long event streams negates the low-latency advantage of EBS.
View Article and Find Full Text PDFIEEE Internet Things J
August 2025
Geometric Media Lab, School of Arts, Media and Engineering and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA.
Human gait analysis with wearable sensors has been widely used in various applications, such as daily life healthcare, rehabilitation, physical therapy, and clinical diagnostics and monitoring. In particular, ground reaction force (GRF) provides critical information about how the body interacts with the ground during locomotion. Although instrumented treadmills have been widely used as the gold standard for measuring GRF during walking, their lack of portability and high cost make them impractical for many applications.
View Article and Find Full Text PDF