Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Naturalistic stimuli, such as videos, can elicit complex brain activations. However, the intricate nature of these stimuli makes it challenging to attribute specific brain functions to the resulting activations, particularly for higher-level processes such as social interactions.

Objective: We hypothesized that activations in different layers of a convolutional neural network (VGG-16) would correspond to varying levels of brain activation, reflecting the brain's visual processing hierarchy. Additionally, we aimed to explore which brain regions would be linked to the deeper layers of the network.

Methods: This study analyzed functional MRI data from participants watching a cartoon video. Using a pre-trained VGG-16 convolutional neural network, we mapped hierarchical features of the video to different levels of brain activation. Activation maps from various kernels and layers were extracted from video frames, and the time series of average activation patterns for each kernel were used in a voxel-wise model to examine brain responses.

Results: Lower layers of the network were primarily associated with activations in lower visual regions, although some kernels also unexpectedly showed associations with the posterior cingulate cortex. Deeper layers were linked to more anterior and lateral regions of the visual cortex, as well as the supramarginal gyrus.

Conclusions: This analysis demonstrated both the potential and limitations of using convolutional neural networks to connect video content with brain functions, providing valuable insights into how different brain regions respond to varying levels of visual processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583445PMC
http://dx.doi.org/10.1093/psyrad/kkae021DOI Listing

Publication Analysis

Top Keywords

convolutional neural
16
neural network
12
brain
9
brain activations
8
brain functions
8
varying levels
8
levels brain
8
brain activation
8
visual processing
8
brain regions
8

Similar Publications

Hybrid two-stage CNN for detection and staging of periodontitis on panoramic radiographs.

J Oral Biol Craniofac Res

August 2025

Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.

Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.

View Article and Find Full Text PDF

DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction.

Front Genet

August 2025

Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.

RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.

View Article and Find Full Text PDF

Gene mutation estimations via mutual information and Ewens sampling based CNN & machine learning algorithms.

J Appl Stat

February 2025

Department of Mathematics and State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, People's Republic of China.

We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise.

View Article and Find Full Text PDF

Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.

View Article and Find Full Text PDF