Improved alternate wetting and drying irrigation increases global water productivity.

Nat Food

National Key Laboratory of Water Disaster Prevention, Jiangsu Key laboratory of Soil and Water Processes in Watershed, College of Geography and Remote Sensing, Hohai University, Nanjing, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rice is the staple food for half of the world's population but also has the largest water footprint among cereal crops. Alternate wetting and drying (AWD) is a promising irrigation strategy to improve paddy rice's water productivity-defined as the ratio of rice yield to irrigation water use. However, its global adoption has been limited due to concerns about potential yield losses and uncertainties regarding water productivity improvements. Here, using 1,187 paired field observations of rice yield under AWD and continuous flooding to quantify AWD effects (ΔY), we found that variation in ΔY is predominantly explained by the lowest soil water potential during the drying period. We estimate that implementing a soil water potential-based AWD scheme could increase water productivity across 37% of the global irrigated rice area, particularly in India, Bangladesh and central China. These findings highlight the potential of AWD to promote more sustainable rice production systems and provide a pathway toward the sustainable intensification of rice cultivation worldwide.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43016-024-01081-zDOI Listing

Publication Analysis

Top Keywords

water productivity
12
alternate wetting
8
wetting drying
8
water
8
rice yield
8
soil water
8
rice
6
awd
5
improved alternate
4
drying irrigation
4

Similar Publications

Vanadium (V) is a trace element in the environment; it is detected in soil, water, air, dust, and food products. V-containing compounds have shown therapeutic potential in the treatment of diabetes. However, studies on the effects of V on animal behavior remain limited and sporadic.

View Article and Find Full Text PDF

Myocardial injury constitutes a life-threatening complication of sepsis, driven by synergistic oxidative-inflammatory pathology involving dysregulated production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and proinflammatory cytokines. This pathophysiological cascade remarkably elevates morbidity and mortality rates in septic patients, emerging as a key contributor to poor clinical outcomes. Despite its clinical significance, no clinically validated therapeutics currently exist for managing septic cardiomyopathy.

View Article and Find Full Text PDF

The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.

View Article and Find Full Text PDF

Two-dimensional 1T-phase MnIrO for high-performance acidic oxygen evolution reaction.

Nanoscale

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.

Proton exchange membrane water electrolysis (PEMWE) is regarded as the most promising technique for the sustainable production of green hydrogen due to its multiple advantages such as high working current density and high hydrogen purity. However, the anodic oxygen evolution reaction (OER) has a significant impact on the overall efficiency of the electrolytic water reaction due to its sluggish kinetics, which has prompted the search for catalysts possessing both high activity and durability. Iridium oxide exhibits excellent stability under acidic conditions but has poor catalytic activity, leading to its inability to meet the strict requirements of large-scale industrial applications.

View Article and Find Full Text PDF

Medium Effect of Bicontinuous Microemulsion on Cobaltocene-Mediated Electroreduction of Coenzyme NAD.

Langmuir

September 2025

Key Laboratory of Colloid and Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, China.

In this paper, a phosphate buffer (0.10 M, pH 7.5)--hexadecane bicontinuous microemulsion (BME) stabilized by the nonionic surfactant CE was for the first time used as the medium to investigate its effect on the electrochemical behavior of the cobaltocene redox couple ( (III)/ (II)) as electron mediator and the -mediated electroreduction of coenzyme NAD.

View Article and Find Full Text PDF