98%
921
2 minutes
20
Cement is one of the most widely used materials in the global construction industry, serving as an adhesive and binder in projects that require strength and durability. Additionally, cement production indicates a country's development and economic activity, with global production reaching approximately 4 billion tons annually. It is a fine powder composed mainly of lime, silica, iron oxide, and alumina. Portland cement is the most common type, although a wide variety of types of cement differ in their chemical composition, providing them with specific properties for different applications. A set of fifty samples, consisting of eleven primary samples and thirty-nine blends formed by the combination of these eleven samples, was prepared. Additionally, twenty-four samples were randomly selected for error covariance calculation. Subsequently, two analytical techniques, laser-induced breakdown spectroscopy (LIBS) and energy dispersive X-ray fluorescence (ED-XRF) were applied to quantify aluminum (Al), calcium (Ca), iron (Fe), potassium (K), magnesium (Mg), sodium (Na), and sulfur (S). Afterward, the samples were analyzed via ICP OES after acid mineralization with 8 mL aqua regia in a digester block. Multivariate calibration strategies such as principal component regression (PCR), maximum likelihood principal component regression (MLPCR), partial least-squares regression (PLS), and error covariance penalized regression (ECPR) were employed. Finally, figures of merit were calculated to verify the most suitable models. The results revealed robust models with notable sensitivity, ranging from 0.3 to 329 signal a.u (% w w)), low limits of detection (LoD) within the range of 0.00-0.1 % w w, and remarkable accuracy ranging from 67.8 % to 140.3 %, particularly for Ca, Fe, Mg, and Na. This research takes an essential step in developing simple analytical methods with low waste generation and less environmental impact, thanks to using novel chemometric techniques to process the data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.127212 | DOI Listing |
Biometrika
December 2024
Department of Biostatistics, Johns Hopkins University, 605 N Wolfe Street, Baltimore, Maryland 21215, U.S.A.
This article addresses the asymptotic performance of popular spatial regression estimators of the linear effect of an exposure on an outcome under spatial confounding, the presence of an unmeasured spatially structured variable influencing both the exposure and the outcome. We first show that the estimators from ordinary least squares and restricted spatial regression are asymptotically biased under spatial confounding. We then prove a novel result on the infill consistency of the generalized least squares estimator using a working covariance matrix from a Matérn or squared exponential kernel, in the presence of spatial confounding.
View Article and Find Full Text PDFStat Med
September 2025
Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA.
Background: Binary endpoints measured at two timepoints-such as pre- and post-treatment-are common in biomedical and healthcare research. The Generalized Bivariate Bernoulli Model (GBBM) provides a specialized framework for analyzing such bivariate binary data, allowing for formal tests of covariate-dependent associations conditional on baseline outcomes. Despite its potential utility, the GBBM remains underutilized due to the lack of direct implementation in standard statistical software.
View Article and Find Full Text PDFArch Phys Med Rehabil
September 2025
Department of Physical Therapy, University of Delaware, Newark, DE, USA; Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA. Electronic address:
Objective: To examine if exercise intensity, quantified as heart rate or training speed, predicts walking outcomes in people with chronic stroke.
Design: This is a secondary analysis from a larger randomized clinical trial ("PROWALKS"; NIH1R01HD086362).
Setting: Four, outpatient rehabilitation clinics.
Neuroimage
September 2025
Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston,
Fetal brain development is a complex and dynamic process, and its disruption can lead to significant neurological disorders. Early detection of brain aberrations during pregnancy is critical for optimizing postnatal medical intervention. We propose a deep generative anomaly detection framework, conditional cyclic variational autoencoding generative adversarial network (CCVAEGAN), that can identify structural brain anomalies using fetal brain magnetic resonance imaging.
View Article and Find Full Text PDFJ Comput Biol
September 2025
The NeuroCognitive Institute (NCI) Clinical Research Foundation, Mount Arlington, New Jersey, USA.
The general linear model (GLM) has been widely used in research, where the error term has been treated as noise. However, compelling evidence suggests that in biological systems, the target variables may possess their innate variances. A modified GLM was proposed to explicitly model biological variance and nonbiological noise.
View Article and Find Full Text PDF