Microfluidics chips fabrication techniques comparison.

Sci Rep

Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, People's Republic of China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigates various microfluidic chip fabrication techniques, highlighting their applicability and limitations in the context of urgent diagnostic needs showcased by the COVID-19 pandemic. Through a detailed examination of methods such as computer numerical control milling of a polymethyl methacrylate, soft lithography for polydimethylsiloxane-based devices, xurography for glass-glass chips, and micromachining-based silicon-glass chips, we analyze each technique's strengths and trade-offs. Hence, we discuss the fabrication complexity and chip thermal properties, such as heating and cooling rates, which are essential features of chip utilization for a polymerase chain reaction. Our comparative analysis reveals critical insights into material challenges, design flexibility, and cost-efficiency, aiming to guide the development of robust and reliable microfluidic devices for healthcare and research. This work underscores the importance of selecting appropriate fabrication methods to optimize device functionality, durability, and production efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579384PMC
http://dx.doi.org/10.1038/s41598-024-80332-2DOI Listing

Publication Analysis

Top Keywords

fabrication techniques
8
microfluidics chips
4
fabrication
4
chips fabrication
4
techniques comparison
4
comparison study
4
study investigates
4
investigates microfluidic
4
microfluidic chip
4
chip fabrication
4

Similar Publications

Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).

View Article and Find Full Text PDF

This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.

View Article and Find Full Text PDF

3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.

View Article and Find Full Text PDF

Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring.

Nanomicro Lett

September 2025

Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.

Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.

View Article and Find Full Text PDF

Population substructure affects kinship testing in multi-ethnic areas of China.

Int J Legal Med

September 2025

West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Ren Min Nan Road 3-17, P.O.Box: 610041, Chengdu, P. R. China.

The likelihood ratio (LR) is a recommended metric for assessing the strength of genetic information in relationship testing, one of the most important tasks in forensic science. LR calculation incorporate population frequencies, which is affected by population substructure. This study utilized population frequency data from 18 short tandem repeat (STR) loci across 13 Chinese populations, encompassing both majority and minority ethnic groups.

View Article and Find Full Text PDF