98%
921
2 minutes
20
Objective: The objective of this study is to develop a predictive model combining multiple indicators to quantify the risk of mild cognitive impairment (MCI) in T2DM patients.
Methods: This study included Chinese T2DM patients who were hospitalized at Zhongda Hospital between November 2021 and May 2023. Clinical data, including demographics, medical history, biochemical tests, and cognitive status, were collected. Cognitive assessment was performed using neuropsychological tests, and MCI was diagnosed based on the Montreal Cognitive Assessment (MoCA) scores. The dataset was randomly divided into a training set and a validation set in a 7:3 ratio. Logistic regression analysis was conducted to identify factors influencing MCI in the training set. A nomogram-based scoring model was then developed by integrating these findings with high-risk clinical variables, and its performance was validated in the validation set.
Results: In this study, T2DM patients were divided into a training set and a validation set in a 7:3 ratio. There were no significant differences in MCI incidence, demographics, or clinical characteristics between the two groups, confirming the appropriateness of model construction. In the training set, Galectin-3 and CVAI were significantly negatively correlated with cognitive function (MoCA and MMSE scores), and this negative correlation remained after adjusting for confounding variables. Logistic regression analysis revealed that age, CVAI, and Galectin-3 significantly increased the risk of MCI, while years of education had a protective effect. The constructed nomogram model, which integrated age, sex, education level, hypertension, CVAI, and Galectin-3 levels, exhibited high predictive performance (C-index of 0.816), with AUCs of 0.816 in the training set and 0.858 in the validation set, outperforming single indicators. PR curve analysis further validated the superiority of the nomogram model.
Conclusion: The straightforward, highly accurate, and interactive nomogram model developed in this study facilitate the early risk prediction of MCI in individuals with T2DM by incorporating Galectin-3, CVAI, and other common clinical risk factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40618-024-02506-z | DOI Listing |
Int J Gen Med
September 2025
School of Public Health, Bengbu Medical University, Bengbu, People's Republic of China.
Objective: To develop and validate a nomogram model for predicting the risk of hyperuricemia (HUA) in perimenopausal women.
Methods: In this study, physical examination information of perimenopausal women was collected at the First Affiliated Hospital of University of Science and Technology of China. We utilized the Least Absolute Shrinkage and Selection Operator (Lasso) and binary logistic regression to investigate the risk factors of HUA among perimenopausal women.
Neurotrauma Rep
August 2025
Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).
View Article and Find Full Text PDFRadiol Adv
September 2024
Department of Radiology, Northwestern University and Northwestern Medicine, Chicago, IL, 60611, United States.
Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.
Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.
J Hepatocell Carcinoma
September 2025
Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
Objective: Anoikis is an anchorage-dependent programmed cell death implicated in multiple pathological processes of cancers; however, the prognostic value of anoikis-related genes (ANRGs) in hepatocellular carcinoma (HCC) remains unclear. Our study aims to develop an ANRGs-based prediction model to improve prognostic assessment in HCC patients.
Methods: The RNA-seq profile was performed to estimate the expression of ANRGs in HCC patients.
J Oral Biol Craniofac Res
August 2025
Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.
Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.
View Article and Find Full Text PDF