Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chemical vapor deposition (CVD) is a rising tool to synthesize metal-organic framework (MOF) films. Despite growing interest and usage, its mechanism is less known. Especially, the identification of intermediates is crucial for understanding the growth mechanism and further controlling their structures. In this paper, we investigated the growth mechanism of 2D MOF Cu(CO) film by CVD. We identified a novel intermediate phase: an octahedral coordination polymer that transforms into an edge-on-oriented 2D MOF. In situ grazing-incidence wide-angle X-ray scattering, X-ray absorption near-edge structure, high-resolution transmission electron microscopy, and Raman spectroscopy studies confirmed that this transformation involves the removal of pillars, leading to the formation of a square-planar 2D MOF. With the identification of intermediates, our study deepens the understanding of MOF film formation by CVD, which lays a foundation to control the structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615937PMC
http://dx.doi.org/10.1021/acs.inorgchem.4c04211DOI Listing

Publication Analysis

Top Keywords

coordination polymer
8
metal-organic framework
8
chemical vapor
8
vapor deposition
8
identification intermediates
8
growth mechanism
8
mof
5
elucidation transformation
4
transformation coordination
4
polymer intermediates
4

Similar Publications

Transformative Therapies for Wound Care: Insights into Tissue Engineering and Regenerative Medicine.

Adv Exp Med Biol

September 2025

Department of Stem Cells & Regenerative Medicine, Center for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.

Wound healing is a dynamic and complex process that consists of four interconnected phases: hemostasis, inflammation, proliferation, and remodeling. This complex process is based on the coordinated actions of growth factors, cytokines, and other cellular interactions. However, conditions such as diabetes and chronic illnesses can disrupt this process and lead to nonhealing wounds or chronic ulcers.

View Article and Find Full Text PDF

Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.

View Article and Find Full Text PDF

The unit cell of the title compound, [Ni(CHNO)]·2CHOH, consists of a neutral complex and two methanol mol-ecules. In the complex, the two tridentate 2-[3-(benzo[][1,3]dioxol-5-yl)-1-1,2,4-triazol-5-yl]-6-(1-pyrazol-1-yl)pyridine ligands coordinate to the central Ni ion through nitro-gen atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa-hedral coordination sphere. Neighbouring mol-ecules are linked through weak C-H(pz)⋯π(ph) inter-actions into monoperiodic chains, which are further linked through weak C-H⋯H/N/C inter-actions into diperiodic layers.

View Article and Find Full Text PDF

Herein, it is reported the synthesis of a niobium-based metal-organic framework (MOF), [Nb-(Bez-(COO))] , for the extraction of caffeine from surface waters. The material was synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis, which confirmed the coordination between the ligand (1,4-benzenodicarboxylic, (Bez-(COO))) and niobium (Nb) with a morphology composed of hexagonal rods, high crystallinity, and a surface area of 94.7 m g.

View Article and Find Full Text PDF

The development of novel optical self-healing materials holds significant importance for applications in anticounterfeiting and information encryption, but remains a formidable challenge. This study presents a fluorescent self-healing material designed for 2D/3D printing anticounterfeiting applications, exhibiting outstanding properties such as high transmittance, excellent mechanical strength, and remarkable self-healing efficiency. The triple dynamic bond networks provide robust mechanical and self-healing capabilities, with the polymer demonstrating a tensile strength of 26.

View Article and Find Full Text PDF