98%
921
2 minutes
20
The degradation of cell wall polysaccharides in pineapple fruit during softening was investigated in the present study. Two pectin fractions and two hemicellulose fractions were extracted from the cell wall materials of 'Comte de Paris' pineapple fruit at five softening stages, and their compositional changes were subsequently analyzed. The process of softening of the fruit corresponded to an increase in the water-soluble pectin (WSP) and 1 M KOH-soluble hemicellulose (HC1) fractions, and a decrease in the acid-soluble pectin (ASP) fraction, which suggested the solubilization and conversion of cellular wall components. However, the content of 4 M KOH-soluble hemicellulose (HC2) decreased and then returned to the initial level. Furthermore, WSP, ASP, and HC1 showed an increment in the content of low molecular weight polymers while a decline in the high molecular weight polymers throughout softening, and not significant change in the contents of different molecular polymers of HC2 was observed. Moreover, the galacturonic acid (GalA) content in the main chain of WSP was maintained at a relatively constant level, but the major branch monosaccharide galactose (Gal) in WSP decreased. Different from WSP, the molar percentages of Gal and GalA in ASP decreased. The Gal or Arabinose (Ara) in HC1 exhibited a gradual decline while the molar percentages of xylose (Xyl) and glucose (Glu) in the main chain increased. These suggested that the main chain of ASP degraded while the branched chains of ASP, WSP and HC1 depolymerized during pineapple softening. Overall, fruit softening of 'Comte de Paris' pineapple was found to be the result of differential modification of pectin and hemicellulose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574306 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1492575 | DOI Listing |
PLoS One
September 2025
Department of Biology, The University of Saskatchewan, College of Arts and Science, Saskatoon, Canada.
Plasmodesmata are specialized structures in plant cell walls that mediate intercellular communication by regulating the trafficking of molecules between adjacent cells. The actin cytoskeleton plays a pivotal role in controlling plasmodesmatal permeability, but the molecular mechanisms underlying this regulation remain unclear. Here, we report that BRK1, a component of the WAVE/SCAR complex involved in Arp2/3-mediated actin nucleation, localizes to PD and primary pit fields in A.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Mathematical and Statistical Methods (Biometris), Wageningen University, Wageningen, The Netherlands.
Many plant cell functions, including cell morphogenesis and anisotropic growth, rely on the self-organisation of cortical microtubules into aligned arrays with the correct orientation. An important ongoing debate is how cell geometry, wall mechanical stresses, and other internal and external cues are integrated to determine the orientation of the cortical array. Here, we demonstrate that microtubule-based nucleation can markedly shift the balance between these often competing directional cues.
View Article and Find Full Text PDFPLoS One
September 2025
Children's Health Research Institute, Victoria Research Labs, London, Ontario, Canada.
Loss of actin cytoskeleton control can hinder integral developmental and physiological processes and can be the basis for a subset of developmental defects. SHROOM3 is an actin binding protein, best characterized as being essential for neural tube closure in vertebrates. Shroom3 expression has also been identified in the developing heart, with some associated congenital heart defects.
View Article and Find Full Text PDFAm J Case Rep
September 2025
Department of Medicine, Infectious Disease Section, King Fahad Specialist Hospital, Dammam, Saudi Arabia.
BACKGROUND Gastrointestinal mucormycosis is an underrecognized and underreported fungal infection with a high mortality rate. Diagnosis is often confounded by a non-specific constellation of signs and symptoms. We present a case of neutropenic colitis and ileocecal perforation secondary to gastrointestinal mucormycosis.
View Article and Find Full Text PDFPhotosynth Res
September 2025
College of Life Sciences, Shanghai Normal University, Shanghai, 200235, China.
Euglena sanguinea (Ehrenberg 1831) is one of the earliest reported species within the genus Euglena. Its prolific proliferation leading to red algal bloom has garnered significant scientific attention due to its ecological and environmental impacts. Despite this, research on E.
View Article and Find Full Text PDF