98%
921
2 minutes
20
Increasing levels of UV-B radiation caused by the greenhouse effect has become an emerging threat to crop health and yield. The glutathione (GSH) metabolic pathway is generally involved in plant stress responses through scavenging accumulated reactive oxygen species, and is therefore believed to play an essential role in enhancing plant tolerance to UV-B stress. However, the complex evolutionary details of this pathway in polyploid plants, especially under UV-B stress, remain largely unknown. Here, using the important allotetraploid crop, , as an example, we comprehensively investigated the composition and phylogenetic relationships of genes encoding 12 key structural enzymes in this pathway, and compared the expression changes of all the relevant genes under UV-B stress (16 kJ m d) based on six leaf transcriptomes. Consequently, we identified 205 structural genes by genome-wide searching and predicted 98 potential regulatory genes under multiple stress conditions by co-expression network analysis. Furthermore, we revealed that 19 structural genes including 5 homoeologous pairs and 96 regulatory genes possessing 25 homoeologous pairs were reticulately correlated without homoeologous selection preference under UV-B stress. This result suggests a complex rewiring and reassignment between structural genes and their regulatory networks in the duplicated metabolic pathways of polyploid cotton. This study extends our understanding of the molecular dynamics of the GSH metabolic pathway in response to UV-B stress in and, more broadly, in polyploid plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575938 | PMC |
http://dx.doi.org/10.1002/ece3.70537 | DOI Listing |
Toxicology
September 2025
Brown University, Department of Pathology and Laboratory Medicine, Providence, RI 02903, USA. Electronic address:
Mercury (Hg) is a global contaminant that is present in human diet as methylmercury (MeHg). Recent studies linked MeHg exposure with high risks of skin cancers. It is unknown whether MeHg is directly genotoxic in skin cells or able to enhance mutagenic effects of UV radiation.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China. Electronic add
Metarhizium acridum is a typical filamentous fungus that has been widely used to control grasshoppers, locusts, and crickets. Genetic engineering is a common strategy to enhance its virulence, conidiation, and stress tolerance. Here, we report that the M.
View Article and Find Full Text PDFJ Exp Bot
September 2025
Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, Chin
Ultraviolet-B (UV-B) light, a natural component of sunlight, plays a crucial role in the regulation of plant growth and development. B-box (BBX) proteins are zinc-finger transcription factors essential for plant growth, development, and responses to abiotic stress. The role of BBX5 in UV-B stress responses has not been previously identified.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
July 2025
Department of Plant Breeding, Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
The medicinal plant is known for its rich secondary metabolite content, which plays a critical role in its therapeutic properties. This study investigates the impact of UV-B radiation on the biosynthesis of secondary metabolites, including phenolic compounds, flavonoids, terpenes, carotenoids, and lycopene, as well as the expression of key biosynthetic genes (, , , , and ) in . Plants were exposed to UV-B radiation for 1 and 2 h, and metabolite content and gene expression were measured at intervals of 3, 6, 9, and 12 h post-exposure.
View Article and Find Full Text PDFPhysiol Plant
September 2025
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
Climate-driven abiotic stresses, responsible for approximately 50% of global crop yield losses, are putting agriculture under increasing pressure, demanding smarter ways to strengthen plants' natural defenses beyond genetic modification. Hydrogen peroxide (HO), long recognized as a key signaling molecule, plays a powerful role in helping plants cope with environmental stress. This review deciphers the mechanistic basis of HO-mediated capacity enhancement under diverse stresses (drought, salinity, heavy metals, heat, cold) while also addressing climate-intensified challenges like waterlogging and ultraviolet (UV) radiation.
View Article and Find Full Text PDF