98%
921
2 minutes
20
Drought stress significantly retards the plant production. Melatonin is a vital hormone, signaling molecule, and bio-regulator of diverse physiological growth and development processes. Its role in boosting agronomic traits under diverse stress conditions has received considerable attention. However, the underlying molecular mechanism of action and how they increase drought stress tolerance has not been fully interpreted. The current study aimed to ascertain the protective role of melatonin in fortifying the antioxidant defense system, modulating the phytohormone profile, and improving agronomic traits of tomato seedlings under drought stress. After the V1 stage (1st leaf fully emerged), tomato seedlings were exposed to PEG-6000 to mimic drought-induced stress (DR 10% and DR 20%), followed by exogenous application of 100 µM soil drench. Drought-induced stress negatively impacted tomato seedlings by reducing growth and development and biomass accumulation, diminishing salicylic acid (SA) and chlorophyll levels, and dramatically lowering the antioxidant defense ability. However, melatonin protected them by activating the defense system, which decreased the oxidative burst and increased the activities of SOD, CAT, and APX. Administration of 100 µM melatonin by soil drench most remarkably downregulated the transcription factors of SlDREB3 and SlNCED3. This study has validated the moderating potential of melatonin against drought-induced stress by maintaining plant growth and development, enhancing hormone levels, elevating antioxidant enzyme activities, and suppressing the relative expression of drought-responsive genes. These findings also provide a basis for the potential use of MT in agricultural research and other relevant fields of study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577958 | PMC |
http://dx.doi.org/10.1186/s12870-024-05752-8 | DOI Listing |
BMC Plant Biol
September 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.
View Article and Find Full Text PDFPhytopathology
September 2025
College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
Fusarium crown rot (FCR) is a soilborne disease that occurs in many cereal-growing regions in the world. An association between FCR development and drought stress has long been known. The FCR symptoms are pronounced under drought stress in both fields and controlled environments.
View Article and Find Full Text PDFPhysiol Plant
September 2025
State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China.
The Gα subunit RGA1, a crucial component of heterotrimeric G proteins, has been well-documented to enhance drought resistance in rice seedlings. However, its role during the reproductive stages has remained unexplored. This study aimed to investigate the function of RGA1 in mitigating drought-induced defects in anther and pollen development during pollen mother cell meiosis with Zhonghua 11 (WT), a Gα-deficient mutant (d1), and an RGA1-overexpressing line (OE-1).
View Article and Find Full Text PDFNew Phytol
October 2025
Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA.
Plant litter decomposition sustains ecosystem productivity and modulates soil carbon cycling. Drought directly impacts decomposition by decreasing soil moisture and indirectly by altering plant tissue chemistry, an aspect that is less explored in decomposition studies. To elucidate the above interactive effects of altered precipitation on litter decomposition, we conducted an in situ and reciprocal decomposition experiment at a climate manipulation experiment (BACE) in MA, USA, using litter from Quercus rubra and Quercus velutina exposed to ambient, dry, and wet precipitation treatments for 4 yr at BACE.
View Article and Find Full Text PDFPlant J
August 2025
Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China.
DNA methylation (5-methylcytosine, 5mC) is a key epigenetic regulator of genome stability and stress adaptation in plants. However, the functional role of its oxidative derivative, 5-hydroxymethylcytosine (5hmC), remains poorly understood in plant systems, largely due to its low abundance and unresolved enzymatic origins. Here, we integrated ACE-seq (APOBEC-coupled epigenetic sequencing) with an optimized Tn5mC-seq (transposase-based library preparation in the context of whole-genome bisulfite sequencing, WGBS) approach to generate the first single-base resolution map of 5hmC in rice (Oryza sativa), unveiling its stress-responsive dynamics and regulatory interplay with 5mC during drought adaptation.
View Article and Find Full Text PDF