98%
921
2 minutes
20
In this study, an alginate/PEG hydrogel was developed via a thiol-Michael addition reaction between oxidized quinone of catechols on dopamine-grafted sodium alginate (SA-DA) and sulfhydryl groups of 4-arm polyethylene glycol tetra-thiol (4-arm PEG-SH) under mildly basic conditions. Through the formation of thiol-terminated catechol groups, the accompanying oxidized catechols are reduced, significantly strengthening the internal network structure of the hydrogel and improving tissue adhesion. Meanwhile, the hydrogels have excellent self-healing properties due to the dynamic non-covalent bonds between the groups. Adjustment of hydrogel properties by varying the mass ratio of two hydrogel precursors. Due to the high content of thiol-terminated catechol groups, the Gel 3 exhibited good tissue adhesion, rapid self-healing ability, and other multifunctions beneficial to wound healing, including killing of E. coli and S. aureus, rapid hemostasis and promoting migration of L929 cells. The full-thickness skin wound model shows that the hydrogel dressing significantly accelerated wound contraction, with increased granulation tissue thickness, collagen disposition, and enhanced vascularization, thus promoting wound healing. Therefore, the thiol-Michael addition reaction is an effective method for creating multifunctional hydrogels, and the injectable self-healing alginate/PEG hydrogels prepared in this way could be used in the biomedical area as wound healing dressing materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122864 | DOI Listing |
Int J Biol Macromol
September 2025
Marine College, Shandong University, Weihai, 264209, China; Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 265599, China. Electronic address:
The treatment of chronic hard-to-heal wounds has become a major medical and public health problem worldwide. The search for novel and efficient wound healing dressings is crucial because of the complex mechanisms of wound genesis and of the inability to spontaneously repair. Many inherent properties of organisms in nature and their intrinsic molecular mechanisms have inspired researchers to design biomimetic hydrogel wound dressings to treat chronic hard-to-heal wounds.
View Article and Find Full Text PDFJ Pharm Sci
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
Bacterial burn wound infections can disrupt the natural wound-healing process, leading to life-threatening diseases. This study aimed to investigate the use of glycerosomes as a novel system for the topical delivery of cefoperazone to promote its burn wound healing action. Cefoperazone-loaded glycerosomes (CEFO-GLY) were optimized using a 2 full-factorial design and prepared via the thin film hydration method.
View Article and Find Full Text PDFJ Invest Dermatol
September 2025
Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA. Electronic address:
Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species.
View Article and Find Full Text PDFLife Sci
September 2025
KM Convergence Research Division, Korea Institute of Oriental Medicine, Republic of Korea; Korean Convergence Medical Science Major, KIOM School, University of Science & Technology (UST), Daejeon, 34054, Republic of Korea. Electronic address:
Background: Intestinal fibrosis is a severe and progressive complication of inflammatory bowel disease (IBD), particularly Crohn's disease (CD), for which no effective anti-fibrotic therapies currently exist.
Purpose: This study aimed to investigate the anti-fibrotic efficacy and underlying mechanisms of Prim-O-glucosylcimifugin (POG), a natural chromone derivative, in TGF-β1-stimulated human intestinal fibroblasts.
Methods: Fibrosis was modeled in human intestinal fibroblast cell lines (CCD-18Co) and human primary intestinal myofibroblasts (HIMF) using TGF-β1.
J Colloid Interface Sci
September 2025
School of Electronic Information & Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, China.
The integration of information memory and computing enabled by nonvolatile memristive device has been widely acknowledged as a critical solution to circumvent the von Neumann architecture limitations. Herein, the Au/NiO/CaBiTiO/FTO (CBTi/NiO) heterojunction based memristor with varying film thicknesses are demonstrated on FTO/glass substrates, and the CBTi/NiO-4 sample shows the optimal memristor characteristics with 5 × 10 stable switching cycles and 10-s resistance state retention. The electrical conduction in the low-resistance state is dominated by Ohmic behavior, while the high-resistance state exhibited characteristics consistent with the space-charge-limited conduction (SCLC) model.
View Article and Find Full Text PDF