98%
921
2 minutes
20
Cold stress is one of the major abiotic stressor that profoundly impacts plant growth. Cotton, a widely cultivated variety, is particularly susceptible to cold stress. Unraveling the responses to cold stress is critical for cotton demand. In this investigation, we conducted comparative physiological and transcriptomic analyses of the cold-tolerant variety XLZ16 and cold-sensitive variety XLZ84 at seedling emergence stage under cold stress. Following exposure to cold stress, XLZ16 exhibited a markedly higher growth phenotype and increased activity of antioxidant enzymes, while simultaneously showing reduced cellular oxidative damage and apoptosis. Furthermore, the levels of auxin (IAA), cytokinin (CTK), and salicylic acid (SA) significantly increased during cold stress, whereas the contents of catendorsterol (TY), brassinosterone (CS), and jasmonic acid (JA) significantly decreased. Integrated with stoichiometric analysis, these findings definitively demonstrated significant differences in antioxidant capacity and hormone content between the two varieties during their response to cold stress. A total of 6207 potential cold-responsive differentially expressed genes (DEGs) were identified through transcriptome sequencing analysis. Enrichment analyses of these DEGs revealed that pathways related to "hormones biosynthesis and signaling" as well as "circadian rhythm" were associated with cold response. Notably, the hub gene Gh_D12G2567 (GhJAZ3), encoding jasmonate ZIM-domain (JAZ) proteins, was found to influence the JA signal transduction pathway and regulate cotton growth under cold stress within the MEred module network. Furthermore, suppressing the expression level of GhJAZ3 by virus-induced gene silencing led to the reduction of cold resistance, implying GhJAZ3 as a positive regulator of cold tolerance. This study provides valuable insights into the response mechanisms of cotton under cold stress. It also serves as a reference and foundation for further enhancing cold tolerance of new cotton varieties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2024.109297 | DOI Listing |
Proc Biol Sci
September 2025
Department of Biology, Evolutionary Ecology and Infection Biology, Lund University, SE-223 62, Lund, Sweden.
Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.
View Article and Find Full Text PDFStress Biol
September 2025
Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Key Laboratory of Mariculture of Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003 China.
Unlabelled: Microhabitat heterogeneity results in significant variations in the thermal environment on a small spatial scale, leading to different intensities of cold stress during extreme low-temperature events. Investigating variations in body temperature and metabolomic responses of organisms inhabiting different microhabitats emerges as an important task for understanding how organisms respond to more frequent extreme low-temperature events in the face of climate change. In the present study, we measured substrate temperature, air temperature, wind speed, light intensity, and body temperature to evaluate the relative importance of drivers that affect body temperature in different microhabitats, and determined the metabolomic responses of intertidal snails and limpets from different microhabitats (snail: exposed vs.
View Article and Find Full Text PDFFront Genet
August 2025
College of Poultry Production and Management, TANUVAS, Hosur, India.
Background: India's indigenous sheep breeds have evolved under extreme and diverse agro-ecological pressures, yet the genomic basis of their resilience and local adaptation remains poorly understood.
Method: This study combines genomic inbreeding estimates, runs of homozygosity (ROH), population structure analyses, and composite selection scans to investigate three native Indian breeds-Changthangi, Deccani, and Garole-within a panel of nine breeds that also includes populations from Africa (Ethiopian Menz), East and South Asia (Tibetan, Chinese Merino, Bangladesh Garole, Bangladesh East), and Europe (Suffolk).
Results: ROH and heterozygosity estimates revealed strong contrasts: Bangladesh East sheep exhibited high genomic inbreeding (F≈14.
Br J Pain
September 2025
Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, The Netherlands.
Background: Preliminary research indicates that psychedelics may hold promise as analgesic agents. This study investigated the potential analgesic effects of lysergic acid diethylamide (LSD) microdosing on pain tolerance and subjective pain perception in healthy participants.
Methods: Utilizing a randomised, placebo-controlled design, participants received 15 μg of LSD or placebo over four administrations.