Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Mutational data from multiple solid and liquid biospecimens of a single patient are often integrated to track cancer evolution. However, there is no accepted framework to resolve if individual samples from the same individual share variants due to common identity versus coincidence.

Experimental Design: Utilizing 8,000 patient tumors from The Cancer Genome Atlas across 33 cancer types, we estimated the background rates of co-occurrence of mutations between discrete pairs of samples across cancers and by cancer type. We developed a mutational profile similarity (MPS) score that uses a large background database to produce confidence estimates that two tumors share a unique, related molecular profile. The MPS algorithm was applied to randomly paired tumor profiles, including patients who underwent repeat solid tumor biopsies sequenced with Memorial Sloan Kettering-IMPACT (n = 53,113). We also evaluated the MPS in sample pairs from single patients with multiple cancers (n = 2,012), as well as patients with plasma and solid tumor variant profiles (n = 884 patients).

Results: In unrelated tumors, nucleotide-specific variants are shared in 1.3% (cancer-type agnostic) and in 10% to 13% (cancer-type specific) of cases. The MPS method contextualized shared variants to specify whether patients had a single cancer versus multiple distinct cancers. When multiple tumors were compared from the same patient and an initial clinicopathologic diagnosis was discordant with molecular findings, the MPS anticipated future diagnosis changes in 28% of examined cases.

Conclusions: The use of a novel shared variant framework can provide information to clarify the molecular relationship between compared biospecimens with minimal required input.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747808PMC
http://dx.doi.org/10.1158/1078-0432.CCR-24-1583DOI Listing

Publication Analysis

Top Keywords

shared variants
8
solid tumor
8
13% cancer-type
8
cancer
6
mps
5
analysis shared
4
variants
4
variants cancer
4
cancer biospecimens
4
biospecimens purpose
4

Similar Publications

Hematopathological profile of plasmacytoid dendritic cell proliferation associated with non-myeloid acute leukemia.

Cytometry B Clin Cytom

September 2025

Department of Hematopathology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, Ch

Two types of plasmacytoid dendritic cell (pDC) proliferation disease are acknowledged so far by the 5th edition of the World Health Organization Classification of Haematolymphoid Tumors: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) and mature pDC proliferation associated with myeloid neoplasms (MPDCP) in which pDC is part of the malignant clone. We aim to investigate pDC proliferation associated with non-myeloid acute leukemia (AL). A retrospective analysis of all cases admitted in our center with a diagnosis of non-myeloid AL from September 2020 to April 2023 was performed to select cases with pDCs greater than 2% of bone marrow by flow cytometry (FCM).

View Article and Find Full Text PDF

Coalescent theory of the ψ directionality index.

G3 (Bethesda)

September 2025

Department of Biology, Stanford University, Stanford, CA 94305, USA.

The ψ directionality index was introduced by Peter & Slatkin (Evolution 67: 3274-3289, 2013) to infer the direction of range expansions from single-nucleotide polymorphism variation. Computed from the joint site frequency spectrum for two populations, ψ uses shared genetic variants to measure the difference in the amount of genetic drift experienced by the populations, associating excess drift with greater distance from the origin of the range expansion. Although ψ has been successfully applied in natural populations, its statistical properties have not been well understood.

View Article and Find Full Text PDF

Interpreting the effects of variants within the human genome and proteome is essential for analysing disease risk, predicting medication response, and developing personalised health interventions. Due to the intrinsic similarities between the structure of natural languages and genetic sequences, natural language processing techniques have demonstrated great applicability in computational variant effect prediction. In particular, the advent of the Transformer has led to significant advancements in the field.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) has been associated with altered performance monitoring, reflected in enhanced amplitudes of the error-related negativity in the event-related potential. However, this is not specific to OCD, as overactive error processing is also evident in anxiety. Although similar neural mechanisms have been proposed for error and feedback processing, it remains unclear whether the processing of errors as indexed by external feedback, reflected in the feedback-related negativity (FRN), is altered in OCD.

View Article and Find Full Text PDF

Intrapatient genomic divergence across multiple primary tumors in young Korean patients.

Korean J Clin Oncol

August 2025

Department of Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.

Purpose: Multiple primary tumors arising in the same individual pose challenges for precision oncology, particularly in the context of hereditary cancer syndromes such as Lynch syndrome. While these tumors may originate from a shared germline predisposition, it remains unclear whether they also share somatic alterations that could be therapeutically exploited. This study aimed to characterize the extent of somatic genomic overlap between synchronous or metachronous gastric and colorectal cancers within young Korean patients.

View Article and Find Full Text PDF