Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Interpreting the effects of variants within the human genome and proteome is essential for analysing disease risk, predicting medication response, and developing personalised health interventions. Due to the intrinsic similarities between the structure of natural languages and genetic sequences, natural language processing techniques have demonstrated great applicability in computational variant effect prediction. In particular, the advent of the Transformer has led to significant advancements in the field. However, transformer-based models are not without their limitations, and a number of extensions and alternatives have been developed to improve results and enhance computational efficiency. This systematic review investigates over 50 different language modelling approaches to computational variant effect prediction over the past decade, analysing the main architectures, and identifying key trends and future directions. Benchmarking of the reviewed models remains unachievable at present, primarily due to the lack of shared evaluation frameworks and data sets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409042 | PMC |
http://dx.doi.org/10.1177/11779322251358314 | DOI Listing |