Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study systematically investigates the oxygen reduction reaction (ORR) catalytic activity of graphene doped with various non-metallic impurities. The non-metal elements include boron (B), silicon (Si), nitrogen (N), phosphorus (P), arsenic (As), oxygen (O), sulfur (S), selenium (Se), tellurium (Te), fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). We found that adsorbates tend to adsorb on positively charged impurity atoms. We identified several substrates with good catalytic activity, all of which have an ORR overpotential of around 0.6 V. We further verified the thermodynamic stability of these substrates and found them to be very stable. We summarized the optimal adsorption energies for ORR intermediates O2H, O, and OH to be -1.9, -3.4, and -2.4 eV, respectively, and validated their reasonableness. Finally, we used simple linear functions to fit the relationship between the adsorption energies of O2H, O, and OH and the charge and magnetic moment of the adsorption site atoms. This model can roughly predict the ORR catalytic activity of doped graphene, facilitating the faster screening of excellent ORR catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202400830DOI Listing

Publication Analysis

Top Keywords

catalytic activity
12
oxygen reduction
8
orr catalytic
8
adsorption energies
8
orr
5
density functional
4
functional theory
4
theory study
4
study screening
4
screening key
4

Similar Publications

PAZ Domain Pivoting is the Rate-Limiting Step for Target DNA Recognition in the Middle Region of Argonaute.

J Chem Inf Model

September 2025

School of Medicine and Warshel Institute for Computational Biology, The Chinese University of Hong Kong─Shenzhen, Shenzhen, Guangdong 518172, China.

Argonaute (Ago) is a DNA-guided programmable endonuclease with emerging applications in genome engineering, yet the rate-determining dynamic mechanisms governing its transition from guide-target hybridization to catalytic activation remain unresolved. Here, we employ molecular dynamics simulations and the Traveling-salesman-based Automated Path Searching (TAPS) approach to dissect the target DNA recognition in the middle region (nt 9-12) of Ago. We designed two paths to tackle this problem: one assumed that coordination of the target DNA backbone occurs before base-pairing between the target and guide DNA; the other hypothesized a concerted transition without preferred order between backbone-coordination and base-pairing.

View Article and Find Full Text PDF

Activating the Oxygen Evolution Performance of NiCuFe by Phosphorus Doping.

Langmuir

September 2025

College of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.

The oxygen evolution reaction (OER), a critical yet kinetically sluggish process in electrochemical water splitting, severely limits efficient hydrogen production. Herein, a simple one-step dynamic hydrogen bubble templated electrodeposition technique is used to prepare a self-supported 3D porous NiCuFeP catalyst with outstanding OER performance. In 1.

View Article and Find Full Text PDF

Casein kinase 1 (CK1) family members are crucial for ER-Golgi trafficking, calcium signalling, DNA repair, transfer RNA (tRNA) modifications, and circadian rhythmicity. Whether and how substrate interactions and kinase autophosphorylation contribute to CK1 plasticity remains largely unknown. Here, we undertake a comprehensive phylogenetic, cellular, and molecular characterization of budding yeast CK1 Hrr25 and identify human CK1 epsilon (CK1ϵ) as its ortholog.

View Article and Find Full Text PDF

Interface-engineered CoN-WN heterostructure catalyst with synergistic dual-site hydrogen bonding and electronic modulation for efficient 5-hydroxymethylfurfural electrooxidation.

J Colloid Interface Sci

September 2025

Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China. Electronic address:

The 5-hydroxymethylfurfural electrooxidation reaction (HMFOR) stands out due to the value-added production and mild conditions. However, its catalytic efficiency is hampered by sluggish kinetics. Herein, with a focus on optimizing the adsorption and activation of reaction molecules, a CoN-WN heterostructure catalyst is constructed for efficient HMFOR.

View Article and Find Full Text PDF

Advancing impactful, economical, and durable Co-based bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been crucial in developing sustainable energy technologies. In this work, Co and CoN nanoparticles (NPs)-incorporated S, N-doped carbon catalysts (Co/CoN/SNC) were prepared via direct pyrolysis of the CoDATT complex, exhibiting high bifunctional electrocatalytic performance for ORR and OER. The complex precursor, CoDATT, was synthesized for the first time using diaminoterthiophene (DATT) and CoCl.

View Article and Find Full Text PDF