Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phased, small interfering RNAs (PhasiRNAs) play a crucial role in supporting male fertility in grasses. Earlier work in maize (Zea mays) and rice (Oryza sativa)-and subsequently many other plant species-identified premeiotic 21-nucleotide (nt) and meiotic 24-nt phasiRNAs. More recently, a group of premeiotic 24-nt phasiRNAs was discovered in the anthers of 2 Pooideae species, barley (Hordeum vulgare) and bread wheat (Triticum aestivum). Whether premeiotic 24-nt phasiRNAs and other classes of reproductive phasiRNAs are conserved across Pooideae species remains unclear. We conducted comparative RNA profiling of 3 anther stages in 6 Pooideae species and 1 Bambusoideae species. We observed complex temporal accumulation patterns of 21-nt and 24-nt phasiRNAs in Pooideae and Bambusoideae grasses. In Bambusoideae, 21-nt phasiRNAs accumulated during meiosis, whereas 24-nt phasiRNAs were present in both premeiotic and postmeiotic stages. We identified premeiotic 24-nt phasiRNAs in all 7 species examined. These phasiRNAs exhibit distinct biogenesis mechanisms and potential Argonaute effectors compared to meiotic 24-nt phasiRNAs. We show that specific Argonaute genes coexpressed with stage-specific phasiRNAs are conserved across Bambusoideae and Pooideae species. Our degradome analysis identified a set of conserved miRNA target genes across species, while 21-nt phasiRNA targets were species-specific. Cleavage of few targets was observed for 24-nt phasiRNAs. In summary, this study demonstrates that premeiotic 24-nt phasiRNAs are present across Bambusoideae and Pooideae families, and the temporal accumulation of other classes of 21-nt and 24-nt phasiRNA differs between bamboo and Pooideae species. Furthermore, targets of the 3 classes of phasiRNAs may be rapidly evolving or undetectable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663589PMC
http://dx.doi.org/10.1093/plcell/koae308DOI Listing

Publication Analysis

Top Keywords

24-nt phasirnas
36
pooideae species
24
phasirnas
16
premeiotic 24-nt
16
bambusoideae pooideae
12
24-nt
10
species
9
comparative rna
8
rna profiling
8
stage-specific phasirnas
8

Similar Publications

PhasiRNAs (phased small interfering RNAs) are a major class of plant small RNAs (sRNA) known to be key regulators in male reproductive development of maize (Zea mays) and rice (Oryza sativa), among other plants. Earlier research focused primarily on premeiotic 21-nucleotide (nt) phasiRNAs and meiotic 24-nt phasiRNAs, while new studies uncovered a premeiotic class of 24-nt phasiRNAs. The biogenesis and function of these phasiRNAs remain unclear.

View Article and Find Full Text PDF

Reproductive, male-enriched small RNAs are present in flowering plants and animals, yet their role in plants remains underexplored. We generated () mutants in durum wheat ( ssp. 2n = 4× = 28; AABB), revealing temperature-sensitive genic male sterility.

View Article and Find Full Text PDF

Phased, small interfering RNAs (PhasiRNAs) play a crucial role in supporting male fertility in grasses. Earlier work in maize (Zea mays) and rice (Oryza sativa)-and subsequently many other plant species-identified premeiotic 21-nucleotide (nt) and meiotic 24-nt phasiRNAs. More recently, a group of premeiotic 24-nt phasiRNAs was discovered in the anthers of 2 Pooideae species, barley (Hordeum vulgare) and bread wheat (Triticum aestivum).

View Article and Find Full Text PDF

Small RNAs are highly abundant and play important roles in plant reproduction. Profiling of small RNAs in reproductive tissues is a critical step in understanding their biology. Here, we describe a protocol for small RNA profiling in rice anthers, with a focus on an abundantly expressed but little-understood reproductive small RNA class named 24-nucleotide phased secondary small interfering RNAs (24-nt phasiRNAs).

View Article and Find Full Text PDF

Ribosome binding of phasiRNA precursors accelerates the 24-nt phasiRNA burst in meiotic maize anthers.

Plant Cell

December 2024

Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.

Reproductive phasiRNAs (phased, secondary, small interfering RNAs), produced from numerous PHAS loci, are essential for plant anther development. PHAS transcripts are enriched on endoplasmic reticulum-bound ribosomes in maize (Zea mays), but the impact of ribosome binding on phasiRNA biogenesis remains elusive. Through ribosome profiling of maize anthers at 10 developmental stages, we demonstrated that 24-PHAS transcripts are bound by ribosomes, with patterns corresponding to the timing and abundance of 24-PHAS transcripts.

View Article and Find Full Text PDF