Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cancer is a collection of illnesses characterized by aberrant cellular proliferation that can infiltrate or metastasize to distant anatomical sites, posing a notable threat to human well-being due to its substantial morbidity and death rates worldwide. The potential of plant-derived natural compounds as anticancer medicines has been assessed owing to their favorable attributes of few side effects and significant antitumor activity. Mangrove plants and their derived compounds have been scientifically shown to exhibit many significant beneficial biological activities, such as anti-inflammatory, immunomodulatory, antioxidant, neuroprotective, cardioprotective, and hepatoprotective properties. This study summarized mangrove plants and their derived compounds as potential anticancer agents, with an emphasis on the underlying molecular mechanisms. To explore this, we gathered data on the preclinical (in vivo and in vitro) anticancer effects of mangrove plants and their derived compounds from reputable literature spanning 2000 to 2023. We conducted thorough searches in various academic databases, including PubMed, ScienceDirect, Wiley Online, SpringerLink, Google Scholar, Scopus, and the Web of Science. The results demonstrated that mangrove plants and their derived compounds have promising anticancer properties in preclinical pharmacological test systems through various molecular mechanisms, including induction of oxidative stress and mitochondrial dysfunction, cytotoxicity, genotoxicity, cell cycle arrest, apoptosis, autophagy, antiproliferative, antimetastatic, and other miscellaneous actions. Upon thorough observation of the pertinent information, it is suggested that mangrove plants and their derived chemicals may serve as a potential lead in the development of novel drugs for cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561795PMC
http://dx.doi.org/10.1002/fsn3.4318DOI Listing

Publication Analysis

Top Keywords

mangrove plants
24
plants derived
20
derived compounds
16
molecular mechanisms
8
derived
6
mangrove
6
plants
6
anticancer
5
compounds
5
anticancer potential
4

Similar Publications

Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported.

View Article and Find Full Text PDF

Making Restoration Effective for Dynamic Coastal Wetlands.

Glob Chang Biol

September 2025

Elkhorn Slough National Estuarine Research Reserve, Watsonville, California, USA.

To halt and reverse the trends of ecosystem loss and degradation under global change, nations globally are promoting ecosystem restoration. Restoration is particularly crucial to coastal wetlands (including tidal marshes, mangrove forests, and tidal flats), which are among the most important ecosystems on Earth but have been severely depleted and degraded. In this review, we explore the question of how to make restoration more effective for coastal wetlands in light of the often-overlooked dynamic nature of these transitional ecosystems between land and ocean.

View Article and Find Full Text PDF

Environmental behaviors and ecological risks of trace metals in typical mangrove wetlands in the Pearl River Delta, South China.

Mar Environ Res

September 2025

State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, China. Electronic address:

There has been a significant reduction in natural mangrove wetlands as a result of human activities and climate change, particularly in densely populated and industrially developed regions. This situation underscores the necessity for research into the environmental behavior of trace metals in mangrove plants and their potential for phytoremediation. In this study, the environmental behaviors of seven trace metals were investigated in three wetlands in the Pearl River Delta, one of the most highly urbanized watersheds in China.

View Article and Find Full Text PDF

Tandem gene duplication facilitates intertidal adaptation in atypical mangrove plants.

Plant J

September 2025

State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Ecology and School of Life Sciences, Sun Yat-sen University, Guangdong, China.

Mangrove plants, originating from inland ancestors, have independently adapted to extreme intertidal zones characterized by salt and hypoxia stress. While typical mangroves exhibit specialized phenotypes, like viviparous seeds and salt secretion, atypical clades that have thrived without such traits are particularly suitable for exploring the molecular and physiological basis underlying plant adaptation to intertidal zones. We assembled a chromosome-level genome of an atypical mangrove, Scyphiphora hydrophylacea, the only mangrove species in Gentianales.

View Article and Find Full Text PDF

The interaction of mangrove trees with endophytic microorganisms contributes to the successful establishment of these plants in the challenging intertidal environment. The red mangrove, L. (Rhizophoraceae), is one of the dominant species in mangrove ecosystems and is characterized by the provision of several ecologically relevant services.

View Article and Find Full Text PDF