98%
921
2 minutes
20
Lung cancer is still a leading cause of cancer-related deaths worldwide. Vital to ameliorating patient survival rates are early detection, precise evaluation, and personalized treatments. Recent years have witnessed a profound transformation in the field, marked by intricate diagnostic processes and intricate therapeutic protocols that integrate diverse omics domains, heralding a paradigm shift towards personalized and preventive healthcare. This dynamic landscape has embraced the incorporation of advanced machine learning and deep learning techniques, particularly artificial intelligence (AI), into the realm of precision medicine. These groundbreaking innovations create fertile ground for the development of AI-based models adept at extracting valuable insights to inform clinical decisions, with the potential to quantitatively interpret patient data and impact overall patient outcomes significantly. In this comprehensive narrative review, a synthesis of various studies is presented, with a specific focus on three core areas aimed at providing clinicians with a practical understanding of AI-based technologies' potential applications in the diagnosis and management of non-small cell lung cancer (NSCLC). The emphasis is placed on methods for diagnosing malignancy in lung lesions, approaches to predicting histology and other pathological characteristics, and methods for predicting NSCLC gene mutations. The review culminates in a discussion of current trends and future perspectives within the domain of AI-based models, all directed toward enhancing patient care and outcomes in NSCLC. Furthermore, the review underscores the synthesis of diverse studies, accentuating AI applications in NSCLC diagnosis and management. It concludes with a forward-looking discussion on current trends and future perspectives, highlighting the LANTERN Study as a pioneering force set to elevate patient care and outcomes to unprecedented levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565297 | PMC |
http://dx.doi.org/10.21037/jtd-24-244 | DOI Listing |
Genome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFSurg Endosc
September 2025
Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Background: Surgical resection is the cornerstone for early-stage non-small cell lung cancer (NSCLC), with lobectomy historically standard. Evolving techniques have spurred debate comparing lobectomy and segmentectomy. This study analyzed early postoperative patient-reported symptoms and functional status in patients with early NSCLC undergoing either procedure.
View Article and Find Full Text PDFEnviron Geochem Health
September 2025
Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
Radon (Rn) is a naturally occurring radioactive gas produced by the decay of uranium-bearing minerals in rocks and soils. Long-term exposure to elevated radon levels in drinking water is associated with an increased risk of stomach and lung cancers. This study aims to assess the concentration of radon in groundwater and evaluate its potential health risks in six cancer-affected districts, i.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFVirchows Arch
September 2025
Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Lung adenocarcinoma (LUAD) associated with usual interstitial pneumonia (UIP) harbours distinct features compared to lung adenocarcinoma without UIP. Therefore, we aimed to characterise the tumour microenvironment of LUAD with UIP by focusing on cancer-associated fibroblasts (CAFs) and stromal composition. Immunohistochemistry was performed on 32 LUAD samples (16 each with and without UIP) to evaluate CAF marker expression and lymphocyte infiltration.
View Article and Find Full Text PDF