Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Translation initiation for 5'-UTR contributes primarily to the efficient protein expression in Escherichia coli. Many studies have focused on constructing random 5'-UTR libraries to investigate the impact of mRNA features on protein translation efficiency. However, the study on the effect of the absence of specific types of nucleotides in the entire 5'-UTR region on translation efficiency has not yet been reported. Here, we constructed four reporter plasmid libraries encoding the sfGFP fluorescent protein, each preceded by 5'-UTRs that lack one specific nucleotide (25B, 25D, 25H, 25V). Each library was transformed into E. coli cells, and the fluorescence distribution among the different libraries was analyzed by flow cytometer. Additionally, we quantified the activity of 256 unique 5'-UTR sequences and analyzed the impact of the corresponding mRNA sequence features on translation efficiency. We found that the 25D library, which lacks the C nucleotide, exhibited the highest overall translation efficiency compared to the other three libraries. Moreover, the minimum free energy and 16S rRNA hybridization energy of the 5'-UTR sequence could work coordinately to influence translation efficiency. The 5'-UTR sequences lacking the C nucleotide also achieve efficient protein translation. These findings may provide several guiding principles for precisely tuning protein expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resmic.2024.104260 | DOI Listing |