Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mesenchymal stem cells (MSCs) have demonstrated promising therapeutic potential in the treatment of type 1 diabetes mellitus (T1DM); however, the underlying mechanism remains unclear. The primary pathological mechanism of T1DM involves activated T cells infiltrating the pancreas, leading to islet inflammation and the destruction of β-cells. However, the question of whether exosomes derived from MSCs can suppress the migration of T cells to the pancreas in the context of T1DM remains unresolved. In this study, we observed that miR-25 was highly expressed in MSCs exosomes and associated with signaling pathways related to cell migration. In vitro assay, we synthesized a miR-25 mimic and transiently transfected it into activated T cells, which revealed that miR-25 can effectively reduce the expression of CXCR3. Additionally, according to the in vivo T1DM mouse model, we found that there was a significant increase in miR-25 levels in T1DM mice treated with MSCs and the number of T cells decreased. Overall, our findings suggest that MSCs exosomes containing miR-25 can impede the infiltration of activated T cells into the pancreas in T1DM by repressing CXCR3 expression in these cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2024.149098DOI Listing

Publication Analysis

Top Keywords

activated cells
12
cells
9
mesenchymal stem
8
stem cells
8
type diabetes
8
diabetes mellitus
8
cells pancreas
8
mscs exosomes
8
t1dm
6
mscs
5

Similar Publications

3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid.

View Article and Find Full Text PDF

Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.

View Article and Find Full Text PDF

Adrenal lipoma formation via PI(3,4,5)P/AKT-dependent transdifferentiation of adrenocortical cells into adipocytes.

Proc Natl Acad Sci U S A

September 2025

Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

Adrenal lipomas are benign tumors containing ectopic adipose tissue in the adrenal gland, an organ that normally lacks both adipocytes and their progenitors. The origin of this ectopic fat remains enigmatic, and the absence of a genetic animal model has hindered its investigation. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P], a key signaling lipid that regulates cellular growth and differentiation, is tightly regulated by the lipid phosphatases PTEN (phosphatase and tensin homolog) and SHIP2 (SH2-containing inositol phosphatase 2).

View Article and Find Full Text PDF

Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.

View Article and Find Full Text PDF

Immunostimulatory and Immunomodulatory Effects of Vitamin B12 Derivatives on Macrophages Through the Modulation of JNK Pathway.

Cell Biochem Biophys

September 2025

Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34003, Türkiye, Turkey.

Vitamin B12 is a vital water-soluble vitamin containing a central cobalt atom within its corrin ring structure. It exists in several derivatives, among which methylcobalamin (MeCbl) and adenosylcobalamin (AdCbl) are the biologically active forms that serve as cofactors in essential enzymatic reactions. Although the neurological and hematological consequences of vitamin B12 deficiency have been extensively studied, its role in immune regulation remains less well understood.

View Article and Find Full Text PDF