A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Classification of recovery states in U15, U17, and U19 sub-elite football players: a machine learning approach. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: A promising approach to optimizing recovery in youth football has been the use of machine learning (ML) models to predict recovery states and prevent mental fatigue. This research investigates the application of ML models in classifying male young football players aged under (U)15, U17, and U19 according to their recovery state. Weekly training load data were systematically monitored across three age groups throughout the initial month of the 2019-2020 competitive season, covering 18 training sessions and 120 observation instances. Outfield players were tracked using portable 18-Hz global positioning system (GPS) devices, while heart rate (HR) was measured using 1 Hz telemetry HR bands. The rating of perceived exertion (RPE 6-20) and total quality recovery (TQR 6-20) scores were employed to evaluate perceived exertion, internal training load, and recovery state, respectively. Data preprocessing involved handling missing values, normalization, and feature selection using correlation coefficients and a random forest (RF) classifier. Five ML algorithms [K-nearest neighbors (KNN), extreme gradient boosting (XGBoost), support vector machine (SVM), RF, and decision tree (DT)] were assessed for classification performance. The K-fold method was employed to cross-validate the ML outputs.

Results: A high accuracy for this ML classification model (73-100%) was verified. The feature selection highlighted critical variables, and we implemented the ML algorithms considering a panel of 9 variables (U15, U19, body mass, accelerations, decelerations, training weeks, sprint distance, and RPE). These features were included according to their percentage of importance (3-18%). The results were cross-validated with good accuracy across 5-fold (79%).

Conclusion: The five ML models, in combination with weekly data, demonstrated the efficacy of wearable device-collected features as an efficient combination in predicting football players' recovery states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554510PMC
http://dx.doi.org/10.3389/fpsyg.2024.1447968DOI Listing

Publication Analysis

Top Keywords

recovery states
12
u15 u17
8
u17 u19
8
football players
8
machine learning
8
recovery state
8
training load
8
perceived exertion
8
feature selection
8
recovery
6

Similar Publications