98%
921
2 minutes
20
Ecosystem gross primary productivity (GPP) is the largest carbon flux between the atmosphere and biosphere and is strongly influenced by soil moisture. However, the response and acclimation of GPP to soil moisture remain poorly understood, leading to large uncertainties in characterizing the impact of soil moisture on GPP in Earth system models. Here we analyze the GPP-soil moisture response curves at 143 sites from the global FLUXNET. We find that GPP at 108 sites exhibits hump-shaped response curves with increasing soil moisture, and an apparent optimum soil moisture ( , at which GPP reaches the maximum) exists widely with large variability among sites and biomes around the globe. Variation in is mostly explained by local water availability, with drier ecosystems having lower than wetter ecosystems, reflecting the water acclimation of . This acclimation is further supported by a field experiment that only manipulates water and keeps other factors constant, which shows a downward shift in after long-term water deficit, and thus a lower soil water requirement to maximize GPP. These results provide compelling evidence for the widespread and its acclimation, shedding new light on understanding and predicting carbon-climate feedbacks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557970 | PMC |
http://dx.doi.org/10.1038/s41467-024-54156-7 | DOI Listing |
Environ Monit Assess
September 2025
Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs of China, Beijing, China.
Simultaneously enhancing the crop yield and reducing nitrous oxide (NO) emissions presents a critical challenge in sustainable agriculture. The application of nitrogen (N) fertilizer is a key strategy to enhance crop yield. However, conventional N application practices often lead to excessive soil N accumulation, insufficient crop N uptake and elevated greenhouse gas (GHG) emissions.
View Article and Find Full Text PDFNew Phytol
September 2025
Environment and Natural Resources Institute, University of Alaska Anchorage, Anchorage, AK, 99508, USA.
Snow is an important insulator of Arctic soils during winter and may be a source of soil moisture in summer. Changes in snow depth are likely to affect fine root growth and mortality via changes in soil temperature, moisture, and/or nutrient availability, which could alter aboveground growth and reproduction of Arctic vegetation. We explored fine root dynamics at three contrasting treelines in northwest Alaska.
View Article and Find Full Text PDFJ Environ Manage
September 2025
College of Water Resources and Architectural Engineering at Northwest Agriculture and Forestry University/Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas at Ministry of Education, Yangling, Shaanxi, 712100, PR China; Academy of Plateau Science and Sustainability,
Alpine ecosystems are critical for water regulation but highly sensitive to climate change. In the Three-River Source Region (TRSR) of the Qinghai-Tibet Plateau, changes in temperature, precipitation, and large-scale ecological restoration have significantly altered vegetation phenology-including the start (SOS), end (EOS), and length (LOS) of the growing season, as well as vegetation growth status (GS). These shifts affect hydrological processes such as evapotranspiration, soil moisture, snowmelt, and runoff.
View Article and Find Full Text PDFSci Total Environ
September 2025
European Commission, Joint Research Centre (JRC), Ispra, Italy. Electronic address:
Drought stress has profound impacts on ecosystems and societies, particularly in the context of climate change. Traditional drought indicators, which often rely on integrated water budget anomalies at various time scales, provide valuable insights but often fail to deliver clear, real-time assessments of vegetation stress. This study introduces the Cooling Efficiency Factor Index (CEFI), a novel metric purely derived from geostationary satellite observations, to detect vegetation drought stress by analyzing daytime surface warming anomalies.
View Article and Find Full Text PDF