98%
921
2 minutes
20
The reduction of nitrogen oxides (NO), which is mainly mediated by metalloenzymes and metal complexes, is a critical process in the nitrogen cycle and environmental remediation. This Frontier article highlights the importance of density functional theory (DFT) calculations to gain mechanistic insights into nitrite (NO) and nitric oxide (NO) reduction reactions facilitated by copper complexes by focusing on two key processes: the reduction of NO to NO by a monocopper complex, with special emphasis on the concerted proton-electron transfer, and the reduction of NO to NO by a dicopper complex, which involves N-N bond formation, NO isomerization, and N-O bond cleavage. These findings underscore the utility of DFT calculations in unraveling complicated reaction mechanisms and offer a foundation for future research aimed at improving the reactivity of transition metal complexes in NO reduction reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt02420f | DOI Listing |
Chem Commun (Camb)
September 2025
University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Rebublic of Serbia.
Carbon aerogels and xerogels, with their 3D porous architectures, ultralow density, high surface area, and excellent conductivity, have emerged as multifunctional materials for energy and environmental applications. This review highlights recent advances in the synthesis of these materials polymerisation, drying, and carbonisation, as well as the role of novel precursors such as graphene, carbon nanotubes, and biomass. Emphasis is also placed on doped and metal-decorated carbon gels as efficient electrocatalysts for oxygen reduction reactions, enabling four- and two-electron pathways for energy conversion and the production of green HO, respectively.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
College of Chemistry, Pingyuan Laboratory, Henan Key Laboratory of Chemical Biology and Organic Chemistry, State Key Laboratory of Coking Coal Resources Green Exploitation, Zhengzhou University, Zhengzhou 450052, P. R. China.
A visible-light-catalyzed three-component cyclization reaction of 2-vinylarylamines with CFSONa and arylaldehydes is developed to build a series of 3-(2,2,2-trifluoroethyl)-3-indoles. This protocol features mild reaction conditions using an 18 W blue LED as the light source at room temperature. The desired 3-indole products can be successfully transformed into valuable tetrahydroindole scaffolds through either reduction or cross-coupling reactions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, P.R. China.
The metal-nitrogen chelated species, MN, have shown promise as efficient electrocatalysts for nitrate reduction, yet the symmetric arrangement of N atoms results in suboptimal adsorption affinity toward reaction substrates and intermediates. The current approaches to breaking the symmetry of MN suffer from inaccuracy and inhomogeneity because of the lack of strategies stemming from molecular design aspects. Herein, we report the construction of symmetry-broken MNO sites in coordination polymers via sequential coordination-covalent control in a one-pot reaction.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
Enhancing the energy conversion efficiency of fuel cells necessitates optimization of oxygen reduction reaction (ORR) under high-voltage conditions through improved Pt catalysis. This study introduces an electrocatalyst that uniformly anchors a high loading (40 wt%) of small Pt nanoparticles (3.2 nm) on a novel support: tellurium and nitrogen co-mediated graphitized mesoporous carbon (Te-N-GMC).
View Article and Find Full Text PDFNano Lett
September 2025
Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
Ampere-level electrocatalytic nitrate reduction to ammonia (eNRA) offers a carbon-neutral alternative to the Haber-Bosch process. However, its energy efficiency is critically hampered by the inherent conflict between the reaction and diffusion. Herein, we propose a reaction-diffusion-coupled strategy implemented on a well-tailored CuCoNiRuPt high-entropy alloy aerogel (HEAA) to simultaneously realize energy barrier homogenization and accelerate mass transport, endowing ampere-level eNRA with a high energy efficiency.
View Article and Find Full Text PDF