Spectrum and genotyping strategies of "dark" genetic matter in germline susceptibility genes of tumor syndromes.

Crit Rev Oncol Hematol

Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hunga

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Despite the widespread use of high-throughput genotyping strategies, certain mutation types remain understudied. We provide an overview of these often overlooked mutation types, with representative examples from common hereditary cancer syndromes.

Methods: We conducted a comprehensive review of the literature and locus-specific variant databases to summarize the germline pathogenic variants discovered through non-routine genotyping methods. We evaluated appropriate detection and analysis methods tailored for these specific genetic aberrations. Additionally, we performed in silico splice predictions on deep intronic variants registered in the ClinVar database.

Results: Our study suggests that, aside from founder mutations, most cases are sporadic. However, we anticipate a relatively high likelihood of splice effects for deep intronic variants. The findings underscore the significant clinical utility of genome sequencing techniques and the importance of applying relevant analysis methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.critrevonc.2024.104549DOI Listing

Publication Analysis

Top Keywords

genotyping strategies
8
mutation types
8
analysis methods
8
deep intronic
8
intronic variants
8
spectrum genotyping
4
strategies "dark"
4
"dark" genetic
4
genetic matter
4
matter germline
4

Similar Publications

Unlabelled: Lactobacilli, recognized as beneficial bacteria within the human body, are celebrated for their multifaceted probiotic functions, including the regulation of intestinal flora, enhancement of body immunity, and promotion of nutrient absorption. This study comprehensively analyzed the genotypic and phenotypic characteristics of () strains isolated from the intestines of healthy chicks and assessed their potential as probiotics. The assembled genome consists of 29,521,986 bp, and a total of 1,771 coding sequences (CDSs) were predicted.

View Article and Find Full Text PDF

Drought has a major impact on crop yields. Silicon (Si) application has been proposed to improve drought resilience via several mechanisms including modifying the level of stomatal gas exchange. However, the impact of Si on transpiration and stomatal conductance varies between studies.

View Article and Find Full Text PDF

Introduction: Soybean cyst nematode populations are rapidly evolving to overcome the limited genetic resistance currently employed in commercial soybean varieties, threatening the future of crop production. To mitigate that, it is crucial to identify novel sources of resistance. Soybean lines PI 561310 and PI 567295 were previously found to exhibit partial SCN resistance despite lacking resistant alleles at and .

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is an extremely aggressive brain tumor, marked by restricted therapeutic possibilities and a generally unfavorable prognosis. GBM's complexity and heterogeneity necessitate comprehensive genetic and immunological profiling to enhance therapeutic strategies.

Methods: The study integrated The Cancer Genome Atlas (TCGA) and Integrative Epidemiology Unit Open Genome-Wide Association Studies (IEU OpenGWAS) data to identify genetic factors influencing GBM using expression quantitative trait loci (eQTL) and genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Genome-wide association study reveals candidate loci for resistance to anthracnose in blueberry.

G3 (Bethesda)

September 2025

Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.

Anthracnose, caused by Colletotrichum gloeosporioides, poses a significant threat to blueberries, necessitating a deeper understanding of the genetic mechanisms underlying resistance to develop efficient breeding strategies. Here, we conducted a genome-wide association study on 355 advanced selections of southern highbush blueberry from the University of Florida Blueberry Breeding and Genomics Program. Visual scores and image analyses were used for assessing disease severity.

View Article and Find Full Text PDF