Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetes mellitus (DM) is a multifaceted metabolic condition, mainly defined by elevated blood glucose levels. A feature of type 2 DM includes insulin resistance (IR), which involves impairments within the insulin signaling pathways. Avenanthramides (AVNs) are phenolic alkaloids found in L. The major AVNs are AVN A, AVN B, and AVN C. They have been reported to offer benefits in preventing inflammation, cancer, and cardiovascular diseases. However, the effects of AVNs on the liver glucose metabolism pathways remain unknown. This study examined the effects and underlying mechanisms through which AVNs alleviate IR induced by free fatty acid (FFA) in HepG2 cells. The results indicated that FFA treatment significantly decreased glucose consumption by 34.54% compared to the control. However, treatments with AVN A, B, and C at 100 μM increased glucose uptake by 57.93%, 58.28%, and 53.10%, respectively, compared to FFA treatment alone. This effect occurs through the increased expression of glucose transporter 4. Furthermore, AVNs significantly enhanced the glycogen content. AVNs induced increased phosphorylation of insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (Akt). AVNs treatment decreased the levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in HepG2 cells. This effect was attributed to AMP-activated protein kinase activation and inhibition of forkhead box protein O1. Collectively, these results suggest that AVNs regulate glucose metabolism by activating the IRS-1/PI3K/Akt pathway, which is related to glycogen synthesis, and by inhibiting key molecules that promote gluconeogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jmf.2024.k.0199DOI Listing

Publication Analysis

Top Keywords

hepg2 cells
12
insulin resistance
8
glycogen synthesis
8
avns
8
avn avn
8
glucose metabolism
8
ffa treatment
8
treatment decreased
8
protein kinase
8
glucose
6

Similar Publications

Solvent-Directed Self-Assembly of Sorafenib into Spherical Particles for Enhanced Anticancer Efficacy.

Nano Lett

September 2025

KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.

Sorafenib, a clinically approved multityrosine kinase inhibitor, exhibits poor aqueous solubility, which limits its bioavailability and therapeutic efficacy. In this study, we introduce a solvent-directed self-assembly strategy to modulate the nanostructure of sorafenib without the use of external carriers or complex formulation techniques. In pure water, sorafenib forms large lamellar aggregates, whereas in 30% methanol-water mixtures, it self-assembles into uniform spherical particles approximately 450 nm in diameter.

View Article and Find Full Text PDF

Isolation, Purification, and Preparation of Taxinine-Loaded Liposomes for Improved Anti-Hepatocarcinogenic Activity.

Drug Dev Res

September 2025

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.

Liver cancer is the fourth most deadly cancer worldwide, but existing treatment options are insufficient, thus highlighting the urgent need for new therapeutic agents. Taxanes, known for their anticancer properties, provide a promising avenue for intervention. In this study, a tetracyclic taxane compound with antitumor activity (taxinine) was extracted and isolated from Taxus chinensis (T.

View Article and Find Full Text PDF

Challenges in cancer treatment lie in the identification and development of novel agents with potent anti-tumor activity. A series of novel dehydroabietylamine-pyrimidine derivatives 3a-3s were designed and synthesized based on the principles of molecular hybridization. The inhibitory activities of the target compounds against the proliferation of four different human cancer cell lines (HepG2, A549, HCT116 and MCF-7) were evaluated.

View Article and Find Full Text PDF

Plant sterol ester of α-linolenic acid protects against ferroptosis in metabolic dysfunction-associated fatty liver disease via activating the Nrf2 signaling pathway.

J Nutr Biochem

September 2025

Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, PR CHINA

Increasing evidence indicates that ferroptosis contributes to the occurrence and development of metabolic dysfunction-associated fatty liver disease (MAFLD). This study aimed to investigate the improvement effect of plant sterol ester of α-linolenic acid (PS-ALA) on ferroptosis in hepatocytes and further elucidate the underlying molecular mechanism, focusing on the regulation of Nrf2 signaling. We found that PS-ALA ameliorated liver iron overload and reduced ROS generation and lipid peroxides (MDA and 4-HNE) production both in mice fed a high-fat diet and HepG2 cells induced by oleic acid/erastin.

View Article and Find Full Text PDF

Optimizing mucosal vaccination: Exploiting Lactobionic acid-modified chitosan for superior gene delivery systems.

Int J Biol Macromol

September 2025

CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal. Electronic a

The increasing prevalence of respiratory disorders highlights the urgent need for effective mucosal vaccines that elicit targeted immune responses at pathogen entry sites. However, the advancement of mucosal vaccines is limited by challenges in antigen delivery and overcoming mucosal immune tolerance. In this study, we developed a gene delivery platform using chitosan functionalized with lactobionic acid (LA) to enhance targeting of antigen-presenting cells and to form stable DNA polyplexes with high transfection efficiency.

View Article and Find Full Text PDF