A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Alternating Donor-Acceptor Ladder-Type Heteroarene for Efficient Photothermal Conversion via Boosting Non-Radiative Decay. | LitMetric

Alternating Donor-Acceptor Ladder-Type Heteroarene for Efficient Photothermal Conversion via Boosting Non-Radiative Decay.

Angew Chem Int Ed Engl

State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of novel ladder-type conjugated molecules is crucial for advancing supramolecular chemistry and material science. In this study, we report a straightforward synthesis of new alternating donor-acceptor (D-A) ladder-type heteroarene, FCDTDPP, and demonstrate its application as photothermal agent for imaging and cancer therapy. FCDTDPP is constructed by vinylene bridge between cyclopentadithiophene (D) and diketopyrrolopyrrole (A) through intramolecular Friedel-Crafts type reaction. FCDTDPP exhibits unique combination of good molecular planarity, efficient intra-/intermolecular mixed D-A interactions, and local aromaticity. These features collectively contribute to its broad and intense absorptions with narrow band gap in red band of the spectra, coupled with multiple vibrational absorption feature, thereby enhancing non-radiative decay process and resulting in efficient photothermal conversion property. FCDTDPP and its nanoparticles (NPs) exhibit superior photothermal conversion performance and stability under 660 nm laser irradiation. Moreover, in vitro studies reveal that FCDTDPP NPs possess excellent biocompatibility, low cytotoxicity, and robust photothermal therapeutic efficacy, a finding further corroborated by preliminary in vivo experiments in tumor-bearing mice. This work charts a novel course for the molecular engineering of organic photothermal conversion systems, propelling relevant research forward.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202418047DOI Listing

Publication Analysis

Top Keywords

photothermal conversion
16
alternating donor-acceptor
8
ladder-type heteroarene
8
efficient photothermal
8
non-radiative decay
8
photothermal
6
fcdtdpp
5
donor-acceptor ladder-type
4
heteroarene efficient
4
conversion
4

Similar Publications