Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The development of novel ladder-type conjugated molecules is crucial for advancing supramolecular chemistry and material science. In this study, we report a straightforward synthesis of new alternating donor-acceptor (D-A) ladder-type heteroarene, FCDTDPP, and demonstrate its application as photothermal agent for imaging and cancer therapy. FCDTDPP is constructed by vinylene bridge between cyclopentadithiophene (D) and diketopyrrolopyrrole (A) through intramolecular Friedel-Crafts type reaction. FCDTDPP exhibits unique combination of good molecular planarity, efficient intra-/intermolecular mixed D-A interactions, and local aromaticity. These features collectively contribute to its broad and intense absorptions with narrow band gap in red band of the spectra, coupled with multiple vibrational absorption feature, thereby enhancing non-radiative decay process and resulting in efficient photothermal conversion property. FCDTDPP and its nanoparticles (NPs) exhibit superior photothermal conversion performance and stability under 660 nm laser irradiation. Moreover, in vitro studies reveal that FCDTDPP NPs possess excellent biocompatibility, low cytotoxicity, and robust photothermal therapeutic efficacy, a finding further corroborated by preliminary in vivo experiments in tumor-bearing mice. This work charts a novel course for the molecular engineering of organic photothermal conversion systems, propelling relevant research forward.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202418047 | DOI Listing |