Navigating Mathematical Basics: A Primer for Deep Learning in Science.

Adv Exp Med Biol

School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, Australia.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a gentle introduction to elementary mathematical notation with the focus of communicating deep learning principles. This is a "math crash course" aimed at quickly enabling scientists with understanding of the building blocks used in many equations, formulas, and algorithms that describe deep learning. While this short presentation cannot replace solid mathematical knowledge that needs multiple courses and years to solidify, our aim is to allow nonmathematical readers to overcome hurdles of reading texts that also use such mathematical notation. We describe a few basic deep learning models using mathematical notation before we unpack the meaning of the notation. In particular, this text includes an informal introduction to summations, sets, functions, vectors, matrices, gradients, and a few more objects that are often used to describe deep learning. While this is a mathematical crash course, our presentation is kept in the context of deep learning and machine learning models including the sigmoid model, the softmax model, and fully connected feedforward deep neural networks. We also hint at basic mathematical objects appearing in neural networks for images and text data.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-64892-2_5DOI Listing

Publication Analysis

Top Keywords

deep learning
24
mathematical notation
12
describe deep
8
learning models
8
neural networks
8
deep
7
learning
7
mathematical
6
navigating mathematical
4
mathematical basics
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Use of artificial intelligence for classification of fractures around the elbow in adults according to the 2018 AO/OTA classification system.

BMC Musculoskelet Disord

September 2025

Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.

Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.

Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF

Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.

View Article and Find Full Text PDF