Will the removal of carbon, nitrogen and mixed disinfectants occur simultaneously: The key role of heterotrophic nitrification-aerobic denitrification strain.

J Hazard Mater

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The capacity and mechanism of heterotrophic nitrification-aerobic denitrification (HNAD) strain (H1) to remove carbon, nitrogen, disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) were investigated in this study. PCMX was removed via metabolism and chemical oxygen demand co-metabolism process. BEC was eliminated through bacterial adsorption, which greatly inhibited the removal of other pollutants. Carbon source optimization tests revealed that glucose was the optimal carbon source for co-removal of pollutants under mixed disinfectants circumstances (PCMX + BEC). Comparing the groups without (G1) and with disinfectants (G2), the content of extracellular polymeric substances was higher, and hydrophobicity was enhanced under the hazardous conditions of G2. All the nitrogen metabolism functional genes in G2 were up-regulated, and the electron transport system activity was also improved. At the same time, G2 had lower reactive oxygen species content, which reduced the probability of resistance genes dissemination, but the abundance of most quantified resistance genes was elevated in G2. Toxicity assessment assays found a dramatic reduction in the virulence of G2's effluent compared with the mixed disinfectants. The results confirmed that H1 strain could be used to treat the disinfectant-containing wastewater, which may aid in the application of HNAD process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136431DOI Listing

Publication Analysis

Top Keywords

mixed disinfectants
12
carbon nitrogen
8
heterotrophic nitrification-aerobic
8
nitrification-aerobic denitrification
8
carbon source
8
resistance genes
8
disinfectants
5
will removal
4
carbon
4
removal carbon
4

Similar Publications

[Experimental optimization of paraffin sectioning techniques for the eyeball].

Zhonghua Yan Ke Za Zhi

September 2025

Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing 400016,

To explore optimized protocols for paraffin section preparation of the eyeball to enhance the histological visualization of key ocular structures. It was an experimental research, conducted from September 2022 to September 2024. The first experiment involved 18 porcine eyeballs, which were divided into five groups (six subgroups) by the random number table method.

View Article and Find Full Text PDF

CFD Evaluation of Far-UVCand Air Cleaning Technologies in Classrooms without Mechanical Ventilation.

J Hazard Mater

September 2025

Architectural Engineering Department, Pennsylvania State University, University Park, PA, USA. Electronic address:

Far-UVC systems and air cleaners are effective strategies for controlling airborne pathogen transmission, particularly in densely occupied spaces with insufficient ventilation, such as school classrooms. This study evaluates the disinfection performance and ozone (O) formation of different far-UVC systems and air cleaners in a standard-sized classroom using computational fluid dynamics (CFD) simulation. Results show that ceiling-mounted far-UVC systems reduce airborne pathogen exposure by up to 30 % more than upper-room and wall-mounted configurations, based on intake fractions and room-average concentrations.

View Article and Find Full Text PDF

The role of ammonia in virus inactivation: A systematic and meta-analysis review.

Water Res

September 2025

Department of Civil and Architecture, School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan. Electronic address:

Ammonia (NH), a naturally occurring disinfectant in wastewater, plays an important role in inactivating pathogens, including viruses. Despite its importance in non-sewered sanitation systems, the inactivation rate constant attributed solely to ammonia ( [Formula: see text] ) remains unclear, owing to the diverse range of disinfection conditions in existing studies. Determining [Formula: see text] is critical for quantifying the contribution of ammonia to viral inactivation and distinguishing it from other environmental factors.

View Article and Find Full Text PDF

Multiscale mechanistic study of ammonia-driven chlorine speciation and control of bacteria and fungal spores in mixed chlorine/chloramines systems.

Water Res

August 2025

Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China

Ensuring microbiological safety in long-distance water distribution systems requires disinfectants that rapidly inactivate microbes, maintain residual stability, and minimize by-product formation. This study investigates how ammonia addition reshapes chlorine speciation and modulates disinfection performance within mixed chlorine/chloramines systems. Four conditions were quantitatively evaluated: four chlorine-based oxidants, varying Cl/N ratios, mixed chlorine/chloramines systems, and dynamically ammonia-regulated systems.

View Article and Find Full Text PDF

Purpureocillium lilacinum is an opportunistic pathogenic fungus associated with endophthalmitis and keratitis. Previously, we isolated the strain P. lilacinum IFM 63780, notable for its high resistance to polyhexamethylene biguanide hydrochloride (PHMB), a common disinfectant and antiseptic used in dermatology and ophthalmology.

View Article and Find Full Text PDF