Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Our study aims to develop a deep learning-based Ankylosing Spondylitis (AS) diagnostic model that achieves human expert-level performance using only a minimal amount of labeled samples for training, in regions with limited access to expert resources.

Methods: Our semi-supervised diagnostic model for AS was developed using 5389 pelvic radiographs (PXRs) from a single medical center, collected from March 2014 to April 2022. The dataset was split into a training set and a validation set with an 8:2 ratio, allocating 431 labeled images and the remaining 3880 unlabeled images for semi-supervised learning. The model's performance was evaluated on 982 PXRs from the same center, assessing metrics such as AUC, accuracy, precision, recall, and F1 scores. Interpretability analysis was performed using explainable algorithms to validate the model's clinical applicability.

Results: Our semi-supervised learning model achieved accuracy, recall, and precision values of 0.891, 0.865, and 0.859, respectively, using only 10% of labeled data from the entire training set, surpassing human expert performance. Extensive interpretability analysis demonstrated the reliability of our model's predictions, making the deep neural network no longer a black box.

Conclusion: This study marks the first application of semi-supervised learning to diagnose AS using PXRs, achieving a 90% reduction in manual annotation costs. The model showcases robust generalization on an independent test set and delivers reliable diagnostic performance, supported by comprehensive interpretability analysis. This innovative approach paves the way for training high-performance diagnostic models on large datasets with minimal labeled data, heralding a cost-effective future for medical imaging research in big data analytics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.109232DOI Listing

Publication Analysis

Top Keywords

semi-supervised learning
16
interpretability analysis
12
learning model
8
pelvic radiographs
8
ankylosing spondylitis
8
diagnostic model
8
training set
8
labeled data
8
model
5
novel semi-supervised
4

Similar Publications

Background: Classification of rose species and verities is a challenging task. Rose is used worldwide for various applications, including but not restricted to skincare, medicine, cosmetics, and fragrance. This study explores the potential of Laser-Induced Breakdown Spectroscopy (LIBS) for species and variety classification of rose flowers, leveraging its advantages such as minimal sample preparation, real-time analysis, and remote sensing.

View Article and Find Full Text PDF

A machine learning-based analysis method for small molecule high content screening of three-dimensional cancer spheroid morphology.

Mol Pharmacol

August 2025

Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland. Electronic address:

Although multiparameter cellular morphological profiling methods and three-dimensional (3D) biological model systems can potentially provide complex insights for pharmaceutical discovery campaigns, there have been relatively few reports combining these experimental approaches. In this study, we used the U87 glioblastoma cell line grown in a 3D spheroid format to validate a multiparameter cellular morphological profiling screening method. The steps of this approach include 3D spheroid treatment, cell staining, fully automated digital image acquisition, image segmentation, numerical feature extraction, and multiple machine learning approaches for cellular profiling.

View Article and Find Full Text PDF

The IPSS-M was developed to revolutionize the prediction of MDS patients' survival by incorporating molecular data. To compensate for lack of access to molecular analyses, the AIPSS-MDS, a supervised machine learning algorithm exclusively based on clinical and cytogenetic data, was developed by the Spanish MDS Group. We used data of the Düsseldorf MDS Registry and included 207 of more than 8500 registry patients whose IPSS-M-requested complete molecular data were known to compare and validate prognostication regarding OS and LFS of the IPSS-M, IPSS-R and AIPSS-MDS.

View Article and Find Full Text PDF

Background: The clinical diagnosis of tremor disorders depends on the interpretation of subtle movement characteristics, signs, and symptoms. Given the absence of a universally accepted biomarker, differentiation between essential tremor (ET) and tremor-dominant Parkinson's disease (PD) frequently proves to be non-trivial.

Objective: To identify generalizable tremor characteristics to differentiate ET and PD using feature extraction and machine learning (ML).

View Article and Find Full Text PDF

Background: The generation of intelligible speech is the single most important outcome after cleft palate repair. The development of velopharyngeal dysfunction (VPD) compromises the outcome, and the burden of VPD remains largely unknown in low- and middle-income countries (LMICs). To scale up VPD care in these areas, we continue to explore the use of artificial intelligence (AI) and machine learning (ML) for automatic detection of VPD from speech samples alone.

View Article and Find Full Text PDF