A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Design, synthesis, and structure-activity relationships of xanthine derivatives as broad-spectrum inhibitors of coronavirus replication. | LitMetric

Design, synthesis, and structure-activity relationships of xanthine derivatives as broad-spectrum inhibitors of coronavirus replication.

Bioorg Chem

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, and CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Ac

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Illuminated by insights into the hijacking of host cellular metabolism by coronaviruses, we identified an initial hit compound 7030B-C5, characterized by a xanthine scaffold, via a cellular-level phenotypic screening from a domestic repertoire of lipid-modulating agents. A series of derivatives were synthesized and optimized through comprehensive structure-activity relationship (SAR) studies focusing on the N-1, C-8, and N-7 positions of xanthine and preliminary exploration on the N-3 position and parent nucleus. Compounds 10e, 10f and 10o, featuring modifications at the N-7 position, showed inhibitory activity with half maximal effective concentration (EC) values in the three-digit nanomolar range against human coronavirus-229E (HCoV-229E). In particular, compound 10o exerted superior potency across various coronavirus strains, including HCoV-229E, HCoV-OC43, and the Omicron variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Further investigations revealed that 10o acted on the post-entry stages of virus replication and exhibited a distinctive antiviral mechanism from that of clinically approved nirmatrelvir and molnupiravir. Moreover, drug combination study indicates that 10o operates additively with nirmatrelvir, molnupiravir or omicsynin B4, a dual inhibitor of host proteases for S protein priming. Additionally, in vivo assessments show that 10o has favorable pharmacokinetic and safety profiles compared to its parent compound 7030B-C5. These findings underscore the potential of 10o as a promising antiviral candidate for the treatment of current and potential future coronavirus infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2024.107925DOI Listing

Publication Analysis

Top Keywords

compound 7030b-c5
8
nirmatrelvir molnupiravir
8
10o
6
design synthesis
4
synthesis structure-activity
4
structure-activity relationships
4
relationships xanthine
4
xanthine derivatives
4
derivatives broad-spectrum
4
broad-spectrum inhibitors
4

Similar Publications