Engineered bispecific antibodies with enhanced breadth and potency against SARS-CoV-2 variants and SARS-related coronaviruses.

Med Microbiol Immunol

Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The concern of COVID-19 persists due to the continuous emergence of variants and the potential spillover of animal coronaviruses. The broad-spectrum neutralizing antibodies play a pivotal role in the prevention and treatment of coronavirus (CoV) infections. Here, we constructed 18 bi-specific antibodies (bsAbs) using 9 antibodies isolated from COVID-19 convalescents and vaccinated individuals, designed as dual variable domain immunoglobulin (DVD-Ig). A bsAb 5-HI showed a high binding capability to the S1 subunit of spike and exhibited breadth and potency against pseudotyped SARS-CoV-2 variants of concerns (VOCs) and SARS-related-CoVs (SARSr-CoVs), with half maximal effective concentration (EC) of 0.028-3.444 nM and 50% inhibitory concentration (IC) of 0.008-0.800 nM. In addition, it retained neutralization potency against the peudotyped virus of recently prevalent JN.1 strain (IC, 12.74 nM). We found that the parental antibodies showed weak or no binding to the receptor binding domain (RBD) of the SARS-CoV, EG.5.1, and JN.1. However, the 5-HI maintained the binding with RBD and prevented the binding between hACE2 and RBD (IC for the RBD of SARS-CoV, 1.067 nM; EG.5.1, 0.423 nM; JN.1, 0.223 nM). In neutralization assays with the authentic virus, we found that the 5-HI effectively neutralized Omicron variants XBB.1.5 (IC, 0.308 nM), EG.5.1 (IC, 0.129 nM), and JN.1 (IC, 13.692 nM), while its parental antibodies showed weakened or no neutralization. Therefore, the 5-HI represents a promising candidate for further development in the treatment and prevention of ongoing evolved SARS-CoV-2 VOCs and other SARSr-CoVs that potentially emerge in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00430-024-00809-9DOI Listing

Publication Analysis

Top Keywords

breadth potency
8
sars-cov-2 variants
8
parental antibodies
8
rbd sars-cov
8
antibodies
6
binding
5
engineered bispecific
4
bispecific antibodies
4
antibodies enhanced
4
enhanced breadth
4

Similar Publications

Administration of HIV-1 neutralizing antibodies can suppress viremia and prevent infection . However, clinical use is challenged by broad envelope sequence diversity and rapid emergence of viral escape . Here, we performed single B cell profiling of 32 top HIV-1 elite neutralizers to identify broadly neutralizing antibodies (bNAbs) with highest potency and breadth for clinical application.

View Article and Find Full Text PDF

Background/objectives: SARS-CoV-2 vaccine candidates comprising the receptor binding domain (RBD) of the spike protein have been shown to confer protection against infection. Previous research evaluating vaccine candidates with SARS-CoV-2 RBD fused to ferritin (RBD-ferritin) and other scaffolds suggested that multimeric assemblies of RBD can enhance antigen presentation to improve the potency and breadth of immune responses. Though RBDs directly fused to a self-assembling scaffold can be delivered as messenger RNA (mRNA) formulated with lipid nanoparticles (LNPs), reports of SARS-CoV-2 vaccine candidates that combine these approaches remain scarce.

View Article and Find Full Text PDF

The 2015 Zika virus (ZIKV) outbreak in Brazil and its global spread underscored the urgent need for effective and broadly protective vaccines. While C57BL/6 and BALB/c mice are widely used in preclinical vaccine research, direct comparisons of their ability to elicit ZIKV-specific neutralizing antibodies (nAbs) remain limited. This study aimed to systematically evaluate and compare the immunogenic potential of these two common mouse strains across diverse vaccine platforms, focusing on their capacity to generate functional neutralizing antibody responses.

View Article and Find Full Text PDF

The epitope that monoclonal CR3022 binds to represents a promising target for broad protection against a wide range of human and zoonotic coronaviruses. We developed a powerful model to evaluate antibody affinity maturation in vivo using immunoglobulin (Ig)-humanized mice that express the predicted germline heavy chain of antibody CR3022. SARS-CoV/SARS-CoV-2 sequential immunization led to the convergent evolution of the germline CR3022 through somatic hypermutation (SHM) that resembled the affinity-matured CR3022 from a human, but now also adapted to key variants and divergent sarbecoviruses.

View Article and Find Full Text PDF

Maternal antibodies serve as a temporary form of inherited immunity, providing humoral protection to vulnerable neonates. Whereas IgG is actively transferred up a concentration gradient via the neonatal Fc Receptor (FcRn), maternal IgA and IgM are typically excluded from fetal circulation. Further, not all IgG molecules exhibit the same transfer efficiency, being influenced by subclass, Fab and Fc domain glycosylation, antigen-specificity, and the temporal dynamics of maternal antibody responses.

View Article and Find Full Text PDF