98%
921
2 minutes
20
Metal ion intercalation into van der Waals gaps of layered materials is vital for large-scale electrochemical energy storage. Transition-metal sulfides, ABS (where A and B represent Zr, Hf, and Ti as monolayers as anodes), are examined as lithium and sodium ion storage. Our study reveals that these monolayers offer exceptional performance for ion storage. The low diffusion barriers enable efficient lithium bonding and rapid separation while all ABS phases remain semiconducting before lithiation and transition to metallic states, ensuring excellent electrical conductivity. Notably, the monolayers demonstrate impressive ion capacities: 1639, 1202, and 1119 mAh/g for Li-ions, and 1093, 801, and 671 mAh/g for Na-ions in ZrTiS, HfTiS, and HfZrS, respectively. Average voltages are 1.16 V, 0.9 V, and 0.94 V for Li-ions and 1.17 V, 1.02 V, and 0.94 V for Na-ions across these materials. Additionally, low migration energy barriers of 0.231 eV, 0.233 eV, and 0.238 eV for Li and 0.135 eV, 0.136 eV, and 0.147 eV for Na make ABS monolayers highly attractive for battery applications. These findings underscore the potential of monolayer ABS as a superior electrode material, combining high adsorption energy, low diffusion barriers, low voltage, high specific capacity, and outstanding electrical conductivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547295 | PMC |
http://dx.doi.org/10.3390/molecules29215208 | DOI Listing |
Physiol Plant
September 2025
Faculty of Bioscience Engineering, Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Ghent, Belgium.
Plant water potential is one of the most frequently measured variables of plant water status. Stem water potential, often approximated by wrapping the leaves, is assumed to be more stable and a better measure of drought stress than leaf water potential. In wheat (Triticum aestivum L.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping, 102249, China.. Electronic address:
Hard carbon has emerged as the most widely studied and commercialized anode material for sodium-ion batteries (SIBs). However, improving the charge transfer kinetics within the plateau potential range of the hard carbon anode is crucial for the development of fast-charging SIBs. In this study, we prepared a novel composite material, ZAPA-1300, by uniformly mixing starch, asphalt, and zinc oxide (ZnO), followed by a two-step treatment process.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.
Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
Lead-free electroceramics have attracted significant research interest as alternatives to lead-containing systems due to concerns related to lead's toxicity to human health and the environment. Solid solutions based on bismuth sodium titanate (BNT) and barium titanate (BT), particularly those with compositions near the morphotropic phase boundary (MPB), such as 0.94 BiNaTiO-0.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
Narrow electrochemical windows and high reactivity of aqueous solutions remain critical bottlenecks for the practical application of aqueous batteries. However, the mechanisms for tuning microscopic reactivity of HO molecules in aqueous electrolytes remain elusive. This study employs six ether molecules with distinct structures and solvation powers to regulate the microstructure of aqueous solutions.
View Article and Find Full Text PDF