Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Jingbai pear is one of the best pear species in China with high quality and nutrition values which are closely linked to its geographical origin. With the purpose of discriminating the PGI Mentougou Jingbai pear from three other producing regions, the stable isotope ratios and elemental profiles of the pears ( = 52) and the corresponding soils and groundwater were determined using isotope ratio mass spectrometry (IRMS) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The results revealed that δN, δO, and Li were significantly different ( < 0.05) in samples from different regions, which indicated their potential to be used in the geographical origin classification of the Jingbai pear. The nitrogen isotopic values of the pear pulp were positively correlated with the δN value and nitrogen content of the corresponding soils, whilst the B, Na, K, Cr, and Cd contents of the pear pulps were positively correlated with their corresponding soils. Orthogonal partial least squares discriminant analysis (OPLS-DA) was performed in combination with analysis of the stable isotopes and elemental profiles, making it possible to distinguish the cultivation regions from each other with a high prediction accuracy (a correct classification rate of 92.3%). The results of this study highlight the potential of stable isotope ratios and elemental profiles to trace the geographical origin of pears at a small spatial scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544955PMC
http://dx.doi.org/10.3390/foods13213417DOI Listing

Publication Analysis

Top Keywords

geographical origin
16
jingbai pear
16
stable isotope
12
elemental profiles
12
corresponding soils
12
isotope ratios
8
ratios elemental
8
mass spectrometry
8
positively correlated
8
pear
7

Similar Publications

Denisovans have yet to be directly associated with a hominin cranium, limiting our understanding of their morphology and geographical distribution. We have attempted to retrieve DNA from a nearly complete Middle Pleistocene cranium from Harbin (>146 ka), northeastern China. Although no DNA could be retrieved from a tooth or the petrous bone, mitochondrial DNA (mtDNA) could be isolated from dental calculus.

View Article and Find Full Text PDF

Purpose: Familial chylomicronemia syndrome (FCS) is a rare autosomal recessive disorder. This study aimed to analyze the genotype distribution of FCS-causing genes in the United Kingdom.

Methods: Data were anonymously collated from 2 genetic testing laboratories providing national genetic diagnosis services for severe hypertriglyceridemia in the United Kingdom.

View Article and Find Full Text PDF

Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.

View Article and Find Full Text PDF

Determining species boundaries is key for appropriately assessing biodiversity. However, the continuity of the speciation process makes delimiting species a difficult task, especially for recently diverged taxa. Furthermore, past introgression may leave traces that result in reticulate evolutionary patterns, challenging the estimation of species relationships.

View Article and Find Full Text PDF

Heat Stress Drives Rapid Viral and Antiviral Innate Immunity Activation in Hexacorallia.

Mol Ecol

September 2025

Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.

The class Hexacorallia, encompassing stony corals and sea anemones, plays a critical role in marine ecosystems. Coral bleaching, the disruption of the symbiosis between stony corals and zooxanthellate algae, is driven by seawater warming and further exacerbated by pathogenic microbes. However, how pathogens, especially viruses, contribute to accelerated bleaching remains poorly understood.

View Article and Find Full Text PDF