A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nuclear receptor E75/NR1D2 promotes tumor malignant transformation by integrating Hippo and Notch pathways. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hormone therapy resistance and the ensuing aggressive tumor progression present a significant clinical challenge. However, the mechanisms underlying the induction of tumor malignancy upon inhibition of steroid hormone signaling remain poorly understood. Here, we demonstrate that Drosophila malignant epithelial tumors show a similar reduction in ecdysone signaling, the main steroid hormone pathway. Our analysis of ecdysone-induced downstream targets reveals that overexpression of the nuclear receptor E75, particularly facilitates the malignant transformation of benign tumors. Genome-wide DNA binding profiles and biochemistry data reveal that E75 not only binds to the transcription factors of both Hippo and Notch pathways, but also exhibits widespread co-binding to their target genes, thus contributing to tumor malignancy. We further validated these findings by demonstrating that depletion of NR1D2, the mammalian homolog of E75, inhibits the activation of Hippo and Notch target genes, impeding glioblastoma progression. Together, our study unveils a novel mechanism by which hormone inhibition promotes tumor malignancy, and describes an evolutionarily conserved role of the oncogene E75/NR1D2 in integration of Hippo and Notch pathway activity during tumor progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649922PMC
http://dx.doi.org/10.1038/s44318-024-00290-3DOI Listing

Publication Analysis

Top Keywords

hippo notch
16
tumor malignancy
12
nuclear receptor
8
promotes tumor
8
malignant transformation
8
notch pathways
8
tumor progression
8
steroid hormone
8
target genes
8
tumor
6

Similar Publications